ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Жуков Г.

На плоскости даны шесть точек. Известно, что их можно разбить на две тройки так, что получатся два треугольника. Всегда ли можно разбить эти точки на две тройки так, чтобы получились два треугольника, которые не имеют друг с другом никаких общих точек (ни внутри, ни на границе)?

   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 298]      



Задача 116576

Тема:   [ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 3
Классы: 7,8,9

Автор: Жуков Г.

На плоскости даны шесть точек. Известно, что их можно разбить на две тройки так, что получатся два треугольника. Всегда ли можно разбить эти точки на две тройки так, чтобы получились два треугольника, которые не имеют друг с другом никаких общих точек (ни внутри, ни на границе)?

Прислать комментарий     Решение

Задача 35048

Темы:   [ Системы точек ]
[ Выпуклые многоугольники ]
Сложность: 3+
Классы: 8,9

На плоскости даны пять точек, из которых никакие три не лежат на одной прямой.
Докажите, что некоторые четыре из этих точек являются вершинами выпуклого четырёхугольника.

Прислать комментарий     Решение

Задача 35142

Темы:   [ Системы отрезков, прямых и окружностей ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 3+
Классы: 9,10

На плоскости дано несколько прямых (больше одной), никакие две из которых не параллельны.
Докажите, что либо найдётся точка, через которую проходят ровно две из данных прямых, либо все прямые проходят через одну точку.

Прислать комментарий     Решение

Задача 35586

Темы:   [ Системы точек и отрезков (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Малые шевеления ]
Сложность: 3+
Классы: 8,9,10

На плоскости нарисовано несколько точек. Докажите, что можно провести прямую так, чтобы расстояния от всех точек до неё были различными.

Прислать комментарий     Решение

Задача 35740

Темы:   [ Системы точек ]
[ Ортоцентр и ортотреугольник ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
Сложность: 3+
Классы: 9,10,11

Найдите все конечные множества точек на плоскости, обладающие таким свойством: никакие три точки множества не лежат на одной прямой и вместе с каждыми тремя точками данного множества ортоцентр треугольника, образованного этими точками, также принадлежит данному множеству.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 298]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .