ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Компьютеры 1, 2, 3, ..., 100 соединены в кольцо (первый со вторым, второй с третьим, ..., сотый с первым). Хакеры подготовили 100 вирусов, занумеровали их и в различное время в произвольном порядке запускают каждый вирус на компьютер, имеющий тот же номер. Если вирус попадает на незаражённый компьютер, то он заражает его и переходит на следующий в цепи компьютер с большим номером до тех пор, пока не попадёт на уже заражённый компьютер (с компьютера 100 вирус переходит на компьютер 1). Тогда вирус погибает, а этот компьютер восстанавливается. Ни на один компьютер два вируса одновременно не попадают. Сколько компьютеров будет заражено в результате атаки этих 100 вирусов?

   Решение

Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 316]      



Задача 116984

Темы:   [ Процессы и операции ]
[ Принцип крайнего (прочее) ]
Сложность: 4
Классы: 5,6,7

Компьютеры 1, 2, 3, ..., 100 соединены в кольцо (первый со вторым, второй с третьим, ..., сотый с первым). Хакеры подготовили 100 вирусов, занумеровали их и в различное время в произвольном порядке запускают каждый вирус на компьютер, имеющий тот же номер. Если вирус попадает на незаражённый компьютер, то он заражает его и переходит на следующий в цепи компьютер с большим номером до тех пор, пока не попадёт на уже заражённый компьютер (с компьютера 100 вирус переходит на компьютер 1). Тогда вирус погибает, а этот компьютер восстанавливается. Ни на один компьютер два вируса одновременно не попадают. Сколько компьютеров будет заражено в результате атаки этих 100 вирусов?

Прислать комментарий     Решение

Задача 65737

Темы:   [ Процессы и операции ]
[ Инварианты и полуинварианты (прочее) ]
[ Центральная симметрия помогает решить задачу ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 4+
Классы: 9,10,11

а) Есть неограниченный набор карточек со словами "abc", "bca", "cab". Из них составляют слово по такому правилу. В качестве начального слова выбирается любая карточка, а далее на каждом шаге к имеющемуся слову можно либо приклеить карточку слева или справа, либо разрезать слово в любом месте (между буквами) и вклеить карточку туда. Можно ли так составить палиндром?

б) Есть неограниченный набор красных карточек со словами "abc", "bca", "cab" и синих карточек со словами "cba", "acb", "bac". Из них по тем же правилам составили палиндром. Верно ли, что было использовано одинаковое количество красных и синих карточек?

Прислать комментарий     Решение

Задача 65857

Темы:   [ Процессы и операции ]
[ Монотонность, ограниченность ]
Сложность: 4+
Классы: 9,10,11

На окружности сидят 12 кузнечиков в различных точках. Эти точки делят окружность на 12 дуг. Отметим 12 середин дуг. По сигналу кузнечики одновременно прыгают, каждый – в ближайшую по часовой стрелке отмеченную точку. Снова образуются 12 дуг, прыжки в середины дуг повторяются, и т. д. Может ли хотя бы один кузнечик вернуться в свою исходную точку после того, как им сделано   a) 12 прыжков;   б) 13 прыжков?

Прислать комментарий     Решение

Задача 78683

Темы:   [ Процессы и операции ]
[ Разбиения на пары и группы; биекции ]
[ Десятичная система счисления ]
[ Объединение, пересечение и разность множеств ]
Сложность: 4+
Классы: 9,10,11

Дано натуральное число N. С ним производится следующая операция: каждая цифра этого числа заносится на отдельную карточку (при этом разрешается добавлять или выбрасывать любое число карточек, на которых написана цифра 0), и затем эти карточки разбивают на две кучи. В каждой из них карточки располагаются в произвольном порядке, и полученные два числа складываются. С полученным числом N1 проделывается такая же операция, и т.д. Докажите, что за 15 шагов из N можно получить однозначное число.
Прислать комментарий     Решение


Задача 98132

Темы:   [ Процессы и операции ]
[ Полуинварианты ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4+
Классы: 7,8,9

Автор: Фомин Д.

Круг разбит на n секторов, в некоторых секторах стоят фишки – всего фишек  n + 1.  Затем позиция подвергается преобразованиям. Один шаг преобразования состоит в следующем: берутся какие-нибудь две фишки, стоящие в одном секторе, и переставляются в разные стороны в соседние секторы. Докажите, что через некоторое число шагов не менее половины секторов будет занято.

Прислать комментарий     Решение

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 316]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .