ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На доске написаны 10 единиц и 10 двоек. За ход разрешается стереть две любые цифры и, если они были одинаковыми, написать двойку, а если разными – единицу. Если последняя оставшаяся на доске цифра – единица, то выиграл первый игрок, если двойка – то второй.

   Решение

Задачи

Страница: << 175 176 177 178 179 180 181 >> [Всего задач: 2440]      



Задача 30426

Темы:   [ Степень вершины ]
[ Четность и нечетность ]
Сложность: 2+
Классы: 6,7,8

Можно ли нарисовать на плоскости 9 отрезков так, чтобы каждый пересекался ровно с тремя другими?

Прислать комментарий     Решение

Задача 30435

Темы:   [ Игры-шутки ]
[ Четность и нечетность ]
Сложность: 2+
Классы: 6,7,8

Числа от 1 до 20 выписаны в строчку. Игроки по очереди расставляют между ними плюсы и минусы. После того, как все места заполнены, подсчитывается результат. Если он чётен, то выигрывает первый игрок, если нечётен, то второй. Кто выиграет?

Прислать комментарий     Решение

Задача 30437

Темы:   [ Игры-шутки ]
[ Четность и нечетность ]
Сложность: 2+
Классы: 6,7,8

На доске написаны 10 единиц и 10 двоек. За ход разрешается стереть две любые цифры и, если они были одинаковыми, написать двойку, а если разными – единицу. Если последняя оставшаяся на доске цифра – единица, то выиграл первый игрок, если двойка – то второй.

Прислать комментарий     Решение

Задача 30621

Темы:   [ Десятичная система счисления ]
[ Признаки делимости (прочее) ]
Сложность: 2+
Классы: 7,8

К числу 15 припишите слева и справа по одной цифре так, чтобы полученное число делилось на 15.

Прислать комментарий     Решение

Задача 30622

Темы:   [ Десятичная система счисления ]
[ Признаки делимости (прочее) ]
Сложность: 2+
Классы: 7,8

Сколько имеется четырёхзначных чисел, которые делятся на 45, а две средние цифры у них – 97?

Прислать комментарий     Решение

Страница: << 175 176 177 178 179 180 181 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .