ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что если записать в обратном порядке цифры любого натурального числа, то разность исходного и нового числа будет делиться на 9.

   Решение

Задачи

Страница: << 188 189 190 191 192 193 194 >> [Всего задач: 2440]      



Задача 30620

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 3 и 9 ]
Сложность: 3-
Классы: 7,8

Докажите, что если записать в обратном порядке цифры любого натурального числа, то разность исходного и нового числа будет делиться на 9.

Прислать комментарий     Решение

Задача 30623

Темы:   [ Десятичная система счисления ]
[ Признаки делимости (прочее) ]
Сложность: 3-
Классы: 7,8

Найдите наименьшее натуральное число, делящееся на 36, в записи которого встречаются все 10 цифр.

Прислать комментарий     Решение

Задача 30671

Темы:   [ Арифметика остатков (прочее) ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3-
Классы: 8,9

Пусть  ka ≡ kb (mod m),  k и m взаимно просты. Тогда  a ≡ b (mod m).

Прислать комментарий     Решение

Задача 30901

Темы:   [ Алгебраические неравенства (прочее) ]
[ Произведения и факториалы ]
Сложность: 3-
Классы: 7,8

n – натуральное число,  n ≥ 4.  Докажите, что  n! ≥ 2n.

Прислать комментарий     Решение

Задача 31082

Темы:   [ Степень вершины ]
[ Четность и нечетность ]
Сложность: 3-
Классы: 6,7,8

Доказать, что число штатов США с нечётным числом соседей чётно.

Прислать комментарий     Решение

Страница: << 188 189 190 191 192 193 194 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .