Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 222]
В последовательности троек целых чисел (2, 3, 5), (6, 15, 10), ... каждая тройка получается из предыдущей таким образом: первое число умножается на второе, второе – на третье, а третье – на первое, и полученные произведения дают новую тройку. Докажите, что ни одно из чисел, получаемых таким образом, не будет степенью целого числа: квадратом, кубом и т.д.
|
|
Сложность: 3+ Классы: 7,8,9
|
Дано n попарно взаимно простых чисел, больших 1 и меньших (2n – 1)². Докажите, что среди них обязательно есть простое число.
|
|
Сложность: 3+ Классы: 7,8,9
|
В стране несколько городов (больше одного); некоторые пары городов соединены дорогами. Известно, что из каждого города можно попасть в любой другой, проезжая по нескольким дорогам. Кроме того, дороги не образуют циклов, то есть если выйти из некоторого города по какой-то дороге и далее двигаться так, чтобы не проходить по одной дороге дважды, то невозможно возвратиться в начальный город. Докажите, что в этой стране найдутся хотя бы два города, каждый из которых соединен дорогой ровно с одним городом.
Можно ли все натуральные числа разбить на пары так, чтобы сумма
чисел в каждой паре была квадратом целого числа?
|
|
Сложность: 3+ Классы: 8,9,10
|
Есть тридцать карточек, на каждой написано по числу: на десяти карточках – a, на десяти других – b, и на десяти оставшихся – c (числа a, b, c все разные). Известно, что к любым пяти карточкам можно подобрать еще пять так, что сумма чисел на этих десяти карточках будет равна нулю. Докажите, что одно из чисел a, b, c равно нулю.
Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 222]