ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что сумма всех чисел вида 1/mn, где m и n – натуральные числа,  1 < m < n < 1986,  не является целым числом.

   Решение

Задачи

Страница: << 115 116 117 118 119 120 121 >> [Всего задач: 694]      



Задача 34902

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Обыкновенные дроби ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Делимость чисел. Общие свойства ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 8,9,10

Докажите, что сумма всех чисел вида 1/mn, где m и n – натуральные числа,  1 < m < n < 1986,  не является целым числом.

Прислать комментарий     Решение

Задача 60554

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Произведения и факториалы ]
[ Геометрическая прогрессия ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 4-
Классы: 8,9,10

Докажите, что число p входит в разложение n! с показателем, не превосходящим  

Прислать комментарий     Решение

Задача 60570

 [Делимость чисел Фибоначчи]
Темы:   [ Числа Фибоначчи ]
[ Деление с остатком ]
[ Периодичность и непериодичность ]
Сложность: 4-
Классы: 8,9,10,11

Докажите справедливость следующих утверждений:
  а)  2 | Fn   ⇔   3 | n;
  б)  3 | Fn   ⇔   4 | n;
  в)  4 | Fn   ⇔   6 | n;
  г)  Fm | Fn   ⇔   m | n  при  m > 2.

Прислать комментарий     Решение

Задача 60571

Темы:   [ Числа Фибоначчи ]
[ Деление с остатком ]
[ Периодичность и непериодичность ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 9,10,11

Докажите, что для любого натурального m существует число Фибоначчи Fn  (n ≥ 1),  кратное m.

Прислать комментарий     Решение

Задача 61504

Темы:   [ Производящие функции ]
[ Рекуррентные соотношения (прочее) ]
[ Числа Фибоначчи ]
Сложность: 4-
Классы: 9,10,11

а) Найдите производящую функцию последовательности чисел Люка (определение чисел Люка смотри в задаче 60585)

б) Пользуясь этой функцией, выразите Ln через φ и (см. задачу 61502).

Прислать комментарий     Решение

Страница: << 115 116 117 118 119 120 121 >> [Всего задач: 694]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .