ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Какие остатки могут получиться при делении  n³ + 3  на  n + 1  при натуральном  n > 2?

   Решение

Задачи

Страница: << 179 180 181 182 183 184 185 >> [Всего задач: 2440]      



Задача 32994

Темы:   [ Теория графов (прочее) ]
[ Делимость чисел. Общие свойства ]
Сложность: 2+
Классы: 8

Выписать в ряд цифры от 1 до 9 (каждую по разу) так, чтобы каждые две подряд идущие цифры давали бы двузначное число, делящееся на 7 или на 13.

Прислать комментарий     Решение

Задача 34938

Темы:   [ Разложение на множители ]
[ Арифметика остатков (прочее) ]
Сложность: 2+

Какие остатки могут получиться при делении  n³ + 3  на  n + 1  при натуральном  n > 2?

Прислать комментарий     Решение

Задача 35455

Темы:   [ Произведения и факториалы ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 2+
Классы: 7,8,9

Докажите, что число 100! не является полным квадратом.

Прислать комментарий     Решение

Задача 35787

Темы:   [ Уравнения в целых числах ]
[ Деление с остатком ]
Сложность: 2+
Классы: 7,8,9

Существуют ли четыре подряд идущих натуральных числа, каждое из которых является степенью (большей 1) другого натурального числа?

Прислать комментарий     Решение

Задача 60454

Темы:   [ Простые числа и их свойства ]
[ Четность и нечетность ]
Сложность: 2+
Классы: 7,8,9

Найдите все простые числа, которые отличаются на 17.

Прислать комментарий     Решение

Страница: << 179 180 181 182 183 184 185 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .