ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости расположено n точек  (n > 3),  никакие три из которых не лежат на одной прямой.
Докажите, что среди треугольников с вершинами в данных точках остроугольные треугольники составляют не более трёх четвертей.

   Решение

Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 298]      



Задача 116384

Темы:   [ Системы отрезков, прямых и окружностей ]
[ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Экстремальные свойства (прочее) ]
Сложность: 4-
Классы: 8,9

На плоскости даны 10 прямых общего положения. При каждой точке пересечения выбирается наименьший угол, образованный проходящими через неё прямыми. Найдите наибольшую возможную сумму всех этих углов.

Прислать комментарий     Решение

Задача 116725

Темы:   [ Системы точек и отрезков (прочее) ]
[ Сумма длин диагоналей четырехугольника ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 10,11

Внутри круга отмечены 100 точек, никакие три из которых не лежат на одной прямой.
Докажите, что их можно разбить на пары и провести прямую через каждую пару так, чтобы все точки пересечения прямых были в круге.

Прислать комментарий     Решение

Задача 66966

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Ортоцентр и ортотреугольник ]
[ Вписанные и описанные окружности ]
Сложность: 4
Классы: 8,9,10

Автор: Saghafian M.

Пусть $A_1$, $A_2$, $A_3$, $A_4$ и $B_1$, $B_2$, $B_3$, $B_4$ – две четверки точек, не лежащих на одной окружности. Известно, что для любых $i$, $j$, $k$ радиусы описанных окружностей треугольников $A_iA_jA_k$ и $B_iB_jB_k$ равны. Обязательно ли $A_iA_j=B_iB_j$ для любых $i$, $j$?
Прислать комментарий     Решение


Задача 35008

Темы:   [ Системы точек ]
[ Комбинаторная геометрия (прочее) ]
[ Подсчет двумя способами ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 4
Классы: 9,10,11

На плоскости расположено n точек  (n > 3),  никакие три из которых не лежат на одной прямой.
Докажите, что среди треугольников с вершинами в данных точках остроугольные треугольники составляют не более трёх четвертей.

Прислать комментарий     Решение

Задача 35723

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Четность и нечетность ]
[ Правильные многоугольники ]
Сложность: 4
Классы: 9,10

а) 10 точек, делящие окружность на 10 равных дуг, попарно соединены пятью хордами. Обязательно ли среди них найдутся две хорды одинаковой длины?

б) 20 точек, делящие окружность на 20 равных дуг, попарно соединены 10 хордами. Докажите, что среди них обязательно найдутся две хорды одинаковой длины?

Прислать комментарий     Решение

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 298]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .