ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Выпуклый многоугольник M переходит в себя при повороте на угол 900. Докажите, что найдутся два круга с отношением радиусов, равным 21/2, один из которых содержит M, а другой - содержится в M.

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 31]      



Задача 35203

Темы:   [ Поворот на $90^\circ$ ]
[ Выпуклые многоугольники ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 9,10

Выпуклый многоугольник M переходит в себя при повороте на угол 900. Докажите, что найдутся два круга с отношением радиусов, равным 21/2, один из которых содержит M, а другой - содержится в M.
Прислать комментарий     Решение


Задача 57923

Темы:   [ Поворот на $90^\circ$ ]
[ Поворот помогает решить задачу ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Вписанная, описанная и вневписанная окружности; их радиусы ]
Сложность: 3+
Классы: 8,9

На сторонах CB и CD квадрата ABCD взяты точки M и K так, что периметр треугольника CMK равен удвоенной стороне квадрата.
Найдите величину угла MAK.

Прислать комментарий     Решение

Задача 67075

Темы:   [ Поворот на $90^\circ$ ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3+
Классы: 8,9,10

На диагонали $AC$ квадрата $ABCD$ взята точка $P$. Пусть $H$ – точка пересечения высот треугольника $APD$, $M$ – середина $AD$ и $N$ – середина $CD$.
Докажите, что прямые $PN$ и $MH$ взаимно перпендикулярны.

Прислать комментарий     Решение

Задача 57919

Темы:   [ Поворот на $90^\circ$ ]
[ Поворот помогает решить задачу ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4-
Классы: 8,9

На сторонах BC и CD квадрата ABCD взяты точки M и K соответственно, причем $ \angle$BAM = $ \angle$MAK. Докажите, что BM + KD = AK.
Прислать комментарий     Решение


Задача 57920

Темы:   [ Поворот на $90^\circ$ ]
[ Поворот помогает решить задачу ]
[ Взаимное расположение высот, медиан, биссектрис и проч. ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC проведены медиана CM и высота CH. Прямые, проведенные через произвольную точку P плоскости перпендикулярно CA, CM и CB, пересекают прямую CH в точках A1, M1 и B1. Докажите, что A1M1 = B1M1.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 31]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .