ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

По окружности выписано 10 чисел, сумма которых равна 100. Известно, что сумма каждых трёх чисел, стоящих рядом, не меньше 29.
Укажите такое наименьшее число А, что в любом таком наборе чисел каждое из чисел не превосходит А.

   Решение

Задачи

Страница: << 172 173 174 175 176 177 178 >> [Всего задач: 1111]      



Задача 34904

Темы:   [ Принцип Дирихле (прочее) ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 3
Классы: 6,7,8,9

Можно ли увезти из каменоломни 50 камней, веса которых равны 370, 372, ... , 468 кг, на семи трёхтонках?

Прислать комментарий     Решение

Задача 35198

Темы:   [ Теория алгоритмов (прочее) ]
[ Таблицы и турниры (прочее) ]
Сложность: 3
Классы: 7,8,9

Дана клетчатая таблица 99×99, каждая клетка которой окрашена в чёрный или в белый цвет. Разрешается одновременно перекрасить все клетки некоторого столбца или некоторой строки в тот цвет, клеток которого в этом столбце или в этой строке до перекрашивания было больше. Всегда ли можно добиться того, чтобы все клетки таблицы стали покрашены в один цвет?

Прислать комментарий     Решение

Задача 35410

Темы:   [ Комбинаторика (прочее) ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 3
Классы: 8,9,10

По окружности выписано 10 чисел, сумма которых равна 100. Известно, что сумма каждых трёх чисел, стоящих рядом, не меньше 29.
Укажите такое наименьшее число А, что в любом таком наборе чисел каждое из чисел не превосходит А.

Прислать комментарий     Решение

Задача 35417

Темы:   [ Принцип крайнего (прочее) ]
[ Числовые таблицы и их свойства ]
Сложность: 3
Классы: 8,9,10

На небе бесконечное число звёзд. Астроном приписал каждой звезде пару натуральных чисел, выражающую яркость и размер. При этом каждые две звезды отличаются хотя бы в одном параметре. Докажите, что найдутся две звезды, первая из которых не меньше второй как по яркости, так и по размеру.

Прислать комментарий     Решение

Задача 35514

Темы:   [ Обход графов ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 3
Классы: 8,9

В углах шахматной доски 3×3 стоят четыре коня: два белых (в соседних углах) и два чёрных.
Можно ли за несколько ходов поставить коней так, чтобы во всех соседних углах стояли кони различного цвета?

Прислать комментарий     Решение

Страница: << 172 173 174 175 176 177 178 >> [Всего задач: 1111]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .