ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Имеется 101 пуговица одного из 11 цветов. Докажите, что либо среди этих пуговиц найдутся 11 пуговиц одного цвета, либо 11 пуговиц разных цветов.

   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 4204]      



Задача 35431

Темы:   [ Инварианты и полуинварианты (прочее) ]
[ Теория игр (прочее) ]
Сложность: 2+
Классы: 7,8

На столе лежат две кучки камней: в первой кучке 10 камней, а во второй - 15. За ход разрешается разделить любую кучку на две меньшие. Проигрывает тот, кто не сможет делать ход. Может ли выиграть второй игрок?
Прислать комментарий     Решение


Задача 35453

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2+
Классы: 7,8

Имеется 101 пуговица одного из 11 цветов. Докажите, что либо среди этих пуговиц найдутся 11 пуговиц одного цвета, либо 11 пуговиц разных цветов.
Прислать комментарий     Решение


Задача 35506

Темы:   [ Принцип Дирихле (прочее) ]
[ Числовые таблицы и их свойства ]
Сложность: 2+
Классы: 7,8

Можно ли таблицу  n×n  заполнить числами –1, 0, 1 так, чтобы суммы во всех строках, во всех столбцах и на главных диагоналях были различны?

Прислать комментарий     Решение

Задача 35552

Тема:   [ Обратный ход ]
Сложность: 2+
Классы: 7,8

На прямой отметили несколько точек. После этого между каждыми двумя соседними точками добавили по точке. Такую операцию повторили три раза, и в результате на прямой оказалось 65 точек. Сколько точек было вначале?

Прислать комментарий     Решение

Задача 35587

Темы:   [ Подсчет двумя способами ]
[ Степень вершины ]
Сложность: 2+
Классы: 7,8

Несколько шестиклассников и семиклассников обменялись рукопожатиями. При этом оказалось, что каждый шестиклассник пожал руку семи семиклассникам, а каждый семиклассник пожал руку шести шестиклассникам. Кого было больше - шестиклассников или семиклассников?

Прислать комментарий     Решение


Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 4204]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .