ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Треугольники
>>
Взаимоотношения между сторонами и углами треугольников. Решение треугольников.
>>
Взаимоотношения между сторонами и углами треугольников (прочее)
Материалы по этой теме:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В древнем шифре, известном под названием "Сцитала", использовалась полоска папируса, которая наматывалась на круглый стержень виток к витку без просветов и нахлестов. Далее, при горизонтальном положении стержня, на папирус построчно записывался текст сообщения. После этого полоска папируса с записанным на ней текстом посылалась адресату, имеющему точно такой же стержень, что позволяло ему прочитать сообщение. В наш адрес поступило сообщение, зашифрованное с помощью шифра "Сцитала". Однако его автор, заботясь о том, чтобы строчки были ровные, во время письма проводил горизонтальные линии, которые остались на полоске в виде черточек между буквами. Угол наклона этих черточек к краю ленты равен α, ширина полоски равна d, а ширина каждой строки равна h. Укажите, как, пользуясь имеющимися данными, прочитать текст. Решение |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]
В древнем шифре, известном под названием "Сцитала", использовалась полоска папируса, которая наматывалась на круглый стержень виток к витку без просветов и нахлестов. Далее, при горизонтальном положении стержня, на папирус построчно записывался текст сообщения. После этого полоска папируса с записанным на ней текстом посылалась адресату, имеющему точно такой же стержень, что позволяло ему прочитать сообщение. В наш адрес поступило сообщение, зашифрованное с помощью шифра "Сцитала". Однако его автор, заботясь о том, чтобы строчки были ровные, во время письма проводил горизонтальные линии, которые остались на полоске в виде черточек между буквами. Угол наклона этих черточек к краю ленты равен α, ширина полоски равна d, а ширина каждой строки равна h. Укажите, как, пользуясь имеющимися данными, прочитать текст.
Сторона треугольника равна 2, прилежащие к ней углы равны 30° и 45°. Найдите остальные стороны треугольника.
Три медианы треугольника разделили его углы на шесть углов, среди которых ровно $k$ больше 30°. Каково наибольшее возможное значение $k$?
В равнобокой трапеции AВСD основания AD и ВС равны 12 и 6 соответственно, а высота равна 4. Сравните углы ВАС и САD.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|