ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На доске была нарисована окружность с отмеченным центром, вписанный в неё четырёхугольник и окружность, вписанная в него, также с отмеченным центром. Затем стерли четырёхугольник (сохранив одну вершину) и вписанную окружность (сохранив её центр). Восстановите какую-нибудь из стертых вершин четырёхугольника, пользуясь только линейкой и проведя не более шести линий.

   Решение

Задачи

Страница: << 59 60 61 62 63 64 65 >> [Всего задач: 372]      



Задача 52393

Темы:   [ Углы между биссектрисами ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Вспомогательная окружность ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC угол B равен 60o, биссектрисы AD и CE пересекаются в точке O. Докажите, что OD = OE.

Прислать комментарий     Решение


Задача 115370

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Угол между касательной и хордой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4-
Классы: 8,9

Пусть точки A , B , C лежат на окружности, а прямая b касается этой окружности в точке B . Из точки P , лежащей на прямой b , опущены перпендикуляры PA1 и PC1 на прямые AB и BC соответственно (точки A1 и C1 лежат на отрезках AB и BC ). Докажите, что A1C1 AC .
Прислать комментарий     Решение


Задача 37003

Темы:   [ Построения одной линейкой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Биссектриса делит дугу пополам ]
[ Вписанные четырехугольники (прочее) ]
[ Описанные четырехугольники ]
Сложность: 4-
Классы: 9,10,11

На доске была нарисована окружность с отмеченным центром, вписанный в неё четырёхугольник и окружность, вписанная в него, также с отмеченным центром. Затем стерли четырёхугольник (сохранив одну вершину) и вписанную окружность (сохранив её центр). Восстановите какую-нибудь из стертых вершин четырёхугольника, пользуясь только линейкой и проведя не более шести линий.

Прислать комментарий     Решение

Задача 55038

Темы:   [ Вспомогательные подобные треугольники ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Правильный (равносторонний) треугольник ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Поворот помогает решить задачу ]
Сложность: 4-
Классы: 8,9

На сторонах AB, AC и BC правильного треугольника ABC расположены соответственно точки C1, B1 и A1, причём треугольник A1B1C1 является правильным. Высота BD треугольника ABC пересекает сторону A1C1 в точке O. Найдите отношение BO/BD, если  A1B1/AB = n.

Прислать комментарий     Решение

Задача 66085

Темы:   [ Вписанные и описанные окружности ]
[ Отношение площадей треугольников с общим углом ]
[ Отношение площадей подобных треугольников ]
[ Вписанные четырехугольники (прочее) ]
[ Вписанный угол равен половине центрального ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
Сложность: 4-
Классы: 9,10

Точка O – центр описанной окружности Ω остроугольного треугольника ABC. Описанная окружность ω треугольника AOC вторично пересекает стороны AB и BC в точках E и F. Оказалось, что прямая EF делит площадь треугольника ABC пополам. Найдите угол B.

Прислать комментарий     Решение

Страница: << 59 60 61 62 63 64 65 >> [Всего задач: 372]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .