ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дана прямоугольная трапеция, основания которой равны a и b (a < b). Известно, что некоторая прямая, параллельная основаниям, рассекает её на две трапеции, в каждую из которых можно вписать окружность. Найдите радиусы этих окружностей.
![]() |
Страница: << 161 162 163 164 165 166 167 >> [Всего задач: 2247]
На сторонах AB и AD квадрата ABCD взяты точки K и M так, что 3AK = 4AM = AB. Докажите, что прямая KM касается окружности, вписанной в квадрат.
Дана прямоугольная трапеция, основания которой равны a и b (a < b). Известно, что некоторая прямая, параллельная основаниям, рассекает её на две трапеции, в каждую из которых можно вписать окружность. Найдите радиусы этих окружностей.
Окружность, проведённая через вершины B и C треугольника
ABC, пересекает сторону AB в точке D, а сторону AC —
в точке E. Площадь круга, ограниченного этой окружностью, в 12
раз меньше площади круга, описанного около треугольника ADE.
Отношение площади треугольника ADE к площади четырёхугольника
BDEC равно
На стороне BC треугольника BCD выбрана точка E, а на стороне
BD — точка F, причём угол BEF равен углу BDC. Площадь круга,
описанного около треугольника CFD, в 5 раз меньше площади круга,
описанного около треугольника BEF. Отношение площади
четырёхугольника CEFD к площади треугольника BEF равно
Внутри квадрата ABCD взята точка M, причём
Страница: << 161 162 163 164 165 166 167 >> [Всего задач: 2247] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |