ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Величины углов при вершинах A, B, C треугольника ABC составляют арифметическую прогрессию с разностью π/7. Биссектрисы этого треугольника пересекаются в точке D. Точки A1, B1, C1 находятся на продолжениях отрезков DA, DB, DC за точки A, B, C соответственно, на одинаковом расстоянии от точки D. Докажите, что величины углов A1, B1, C1 также образуют арифметическую прогрессию. Найдите её разность.

   Решение

Задачи

Страница: << 105 106 107 108 109 110 111 >> [Всего задач: 694]      



Задача 73590

Темы:   [ Десятичная система счисления ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Индукция (прочее) ]
Сложность: 6+
Классы: 8,9,10,11

Все натуральные числа, в десятичной записи которых не больше n цифр, разбили на два множества следующим образом. В первое множество входят числа с нечётной суммой цифр, а во второе — c чётной суммой цифр. Докажите, что для любого натурального числа k £ n сумма k-х степеней всех чисел первого множества равна сумме k-х степеней всех чисел второго множества.
Прислать комментарий     Решение


Задача 109652

Темы:   [ Процессы и операции ]
[ Рекуррентные соотношения (прочее) ]
[ Инварианты ]
[ Индукция (прочее) ]
Сложность: 6+
Классы: 9,10,11

На бесконечной в обе стороны полосе из клеток, пронумерованных целыми числами, лежит несколько камней (возможно, по нескольку в одной клетке). Разрешается выполнять следующие действия:

  1. Снять по одному камню с клеток n-1 и n и положить один камень в клетку n+1 ;
  2. Снять два камня с клетки n и положить по одному камню в клетки n+1 , n-2 .
Докажите, что при любой последовательности действий мы достигнем ситуации, когда указанные действия больше выполнять нельзя, и эта конечная ситуация не зависит от последовательности действий (а зависит только от начальной раскладки камней по клеткам).
Прислать комментарий     Решение

Задача 60281

Темы:   [ Индукция (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Арифметическая прогрессия ]
Сложность: 2
Классы: 7,8,9

Докажите тождество: 1 + 3 + 5 +...+ (2n – 1) = n2.
Прислать комментарий     Решение


Задача 53388

Темы:   [ Углы между биссектрисами ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Арифметическая прогрессия ]
Сложность: 2+
Классы: 8,9

Величины углов при вершинах A, B, C треугольника ABC составляют арифметическую прогрессию с разностью π/7. Биссектрисы этого треугольника пересекаются в точке D. Точки A1, B1, C1 находятся на продолжениях отрезков DA, DB, DC за точки A, B, C соответственно, на одинаковом расстоянии от точки D. Докажите, что величины углов A1, B1, C1 также образуют арифметическую прогрессию. Найдите её разность.

Прислать комментарий     Решение

Задача 60304

Темы:   [ Индукция (прочее) ]
[ Алгебраические неравенства (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 2+
Классы: 8,9,10

Докажите неравенство для натуральных  n > 1:  

Прислать комментарий     Решение

Страница: << 105 106 107 108 109 110 111 >> [Всего задач: 694]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .