ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Рассмотрим два различных четырёхугольника с соответственно равными сторонами.
Докажите, что если у одного из них диагонали перпендикулярны, то и у другого тоже.

   Решение

Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 84]      



Задача 54558

Темы:   [ Геометрические Места Точек ]
[ ГМТ - прямая или отрезок ]
Сложность: 4+
Классы: 8,9

Даны отрезок AB и на нём точка C. Найдите геометрическое место точек пересечения двух равных окружностей, одна из которых проходит через точки A и C, другая — через точки C и B.

Прислать комментарий     Решение


Задача 55375

Темы:   [ Разложение вектора по двум неколлинеарным векторам ]
[ ГМТ - прямая или отрезок ]
Сложность: 4+
Классы: 8,9

Какую линию описывает середина отрезка между двумя пешеходами, равномерно идущими по прямым дорогам?

Прислать комментарий     Решение


Задача 53605

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Четырехугольник: вычисления, метрические соотношения. ]
[ ГМТ - прямая или отрезок ]
Сложность: 3
Классы: 8,9

Рассмотрим два различных четырёхугольника с соответственно равными сторонами.
Докажите, что если у одного из них диагонали перпендикулярны, то и у другого тоже.

Прислать комментарий     Решение

Задача 54547

Темы:   [ Средняя линия треугольника ]
[ Средняя линия трапеции ]
[ ГМТ - прямая или отрезок ]
Сложность: 3+
Классы: 8,9

Найдите геометрическое место середин отрезков с концами на двух данных параллельных прямых.

Прислать комментарий     Решение

Задача 65365

Темы:   [ Перпендикулярные прямые ]
[ Теорема Пифагора (прямая и обратная) ]
[ ГМТ - прямая или отрезок ]
[ Радикальная ось ]
Сложность: 3+
Классы: 8,9,10,11

Через вершины B и C треугольника ABC провели перпендикулярно прямой BC прямые b и c соответственно. Серединные перпендикуляры к сторонам AC и AB пересекают прямые b и c в точках P и Q соответственно. Докажите, что прямая PQ перпендикулярна медиане AM треугольника ABC.

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 84]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .