ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что если стороны a, b и противолежащие им углы α и β треугольника связаны соотношением  a/cos α = b/cos β,  то треугольник – равнобедренный.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 523]      



Задача 54719

Тема:   [ Теорема синусов ]
Сложность: 3-
Классы: 8,9

В треугольнике ABC известно, что $ \angle$A = $ \alpha$, $ \angle$C = $ \beta$, AB = a; AD - биссектриса. Найдите BD.

Прислать комментарий     Решение


Задача 54911

Темы:   [ Теорема синусов ]
[ Признаки и свойства параллелограмма ]
Сложность: 3-
Классы: 8,9

Диагональ параллелограмма делит его угол на части в 30o и 45o. Найдите отношение сторон параллелограмма.

Прислать комментарий     Решение


Задача 55345

Темы:   [ Теорема синусов ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3
Классы: 8,9

Площадь треугольника ABC равна S, $ \angle$BAC = $ \alpha$, $ \angle$BCA = $ \gamma$. Найдите AB.

Прислать комментарий     Решение


Задача 52827

Темы:   [ Теорема синусов ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3
Классы: 8,9

В параллелограмме ABCD острый угол равен α . Окружность радиуса r проходит через вершины A , B , C и пересекает прямые AD и CD в точках M и N . Найдите площадь треугольника BMN .
Прислать комментарий     Решение


Задача 53638

Темы:   [ Теорема синусов ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

Докажите, что если стороны a, b и противолежащие им углы α и β треугольника связаны соотношением  a/cos α = b/cos β,  то треугольник – равнобедренный.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 523]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .