ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан ромб ABCD. Окружность радиуса R касается прямых AB и AD в точках B и D соответственно и пересекает сторону BC в точке L, причём 4BL = BC. Найдите площадь ромба.

   Решение

Задачи

Страница: << 162 163 164 165 166 167 168 >> [Всего задач: 2247]      



Задача 54296

Темы:   [ Проекции оснований, сторон или вершин трапеции ]
[ Площадь трапеции ]
Сложность: 4
Классы: 8,9

В трапеции ABCD точки K и M являются соответственно серединами оснований AB и CD. Известно, что AM перпендикулярно DK и CK перпендикулярно BM, а угол CKD равен 60o. Найдите площадь трапеции, если её высота равна 1.

Прислать комментарий     Решение


Задача 54322

Темы:   [ Ромбы. Признаки и свойства ]
[ Признаки и свойства касательной ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4
Классы: 8,9

Дан ромб ABCD. Окружность радиуса R касается прямых AB и AD в точках B и D соответственно и пересекает сторону BC в точке L, причём 4BL = BC. Найдите площадь ромба.

Прислать комментарий     Решение


Задача 55215

Темы:   [ Общие четырехугольники ]
[ Неравенства для элементов треугольника (прочее) ]
Сложность: 4
Классы: 8,9

Пусть ABCD и A1B1C1D1 — два выпуклых четырёхугольника с соответственно равными сторонами. Докажите, что если $ \angle$A > $ \angle$A1, то $ \angle$B < $ \angle$B1, $ \angle$C > $ \angle$C1, $ \angle$D < $ \angle$D1.

Прислать комментарий     Решение


Задача 55251

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Неравенство треугольника ]
Сложность: 4
Классы: 8,9

Существуют ли две трапеции, основания первой из которых соответственно равны боковым сторонам второй, а основания второй — боковым сторонам первой?

Прислать комментарий     Решение


Задача 55334

Темы:   [ Ромбы. Признаки и свойства ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 4
Классы: 8,9

В остроугольном треугольнике ABC точка D выбрана на стороне AB так, что $ \angle$DCA = 45o. Точка D1 симметрична точке D относительно прямой BC, а точка D2 симметрична точке D1 относительно прямой AC и лежит на продолжении отрезка BC за точку C. Найдите площадь треугольника ABC, если BC = $ \sqrt{3}$CD2, AB = 4.

Прислать комментарий     Решение


Страница: << 162 163 164 165 166 167 168 >> [Всего задач: 2247]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .