ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Противоположные стороны шестиугольника ABCDEF попарно параллельны. Докажите, что треугольники ACE и BDF равновелики.

   Решение

Задачи

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 507]      



Задача 116398

Темы:   [ Правильные многоугольники ]
[ Принцип Дирихле (прочее) ]
Сложность: 4
Классы: 8,9

Автор: Брагин В.

Вершины правильного 45-угольника раскрашены в три цвета, причём вершин каждого цвета поровну. Докажите, что можно выбрать по три вершины каждого цвета так, чтобы три треугольника, образованные выбранными одноцветными вершинами, были равны.

Прислать комментарий     Решение

Задача 116625

Темы:   [ Шестиугольники ]
[ Многоугольники (неравенства) ]
[ Четырехугольник (неравенства) ]
Сложность: 4
Классы: 9,10,11

Автор: Фольклор

Длина каждой из сторон выпуклого шестиугольника ABCDEF меньше 1. Может ли длина каждой из диагоналей АD, ВЕ и CF быть не меньше 2?

Прислать комментарий     Решение

Задача 116946

Темы:   [ Правильные многоугольники ]
[ Комбинаторная геометрия (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 8,9,10

Автор: Храмцов Д.

На окружности длины 2013 отмечены 2013 точек, делящих её на равные дуги. В каждой отмеченной точке стоит фишка. Назовём расстоянием между двумя точками длину меньшей дуги между ними. При каком наибольшем n можно переставить фишки так, чтобы снова в каждой отмеченной точке было по фишке, а расстояние между любыми двумя фишками, изначально удалёнными не более чем на n, увеличилось?

Прислать комментарий     Решение

Задача 55141

Темы:   [ Шестиугольники ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 4
Классы: 8,9

Противоположные стороны шестиугольника ABCDEF попарно параллельны. Докажите, что треугольники ACE и BDF равновелики.

Прислать комментарий     Решение


Задача 55175

Темы:   [ Произвольные многоугольники ]
[ Неравенство треугольника (прочее) ]
[ Средняя линия треугольника ]
Сложность: 4+
Классы: 8,9

Середины соседних сторон выпуклого многоугольника соединены отрезками. Докажите, что периметр многоугольника, образованного этими отрезками, не меньше половины периметра исходного многоугольника.

Прислать комментарий     Решение


Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 507]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .