ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Постройте четырёхугольник ABCD по четырём сторонам, если известно, что его диагональ AC является биссектрисой угла A.

   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]      



Задача 54592

Темы:   [ Параллельный перенос. Построения и геометрические места точек ]
[ Четырехугольники (построения) ]
Сложность: 4+
Классы: 8,9

С помощью циркуля и линейки постройте четырёхугольник по диагоналям, углу между ними и двум каким-нибудь сторонам.

Прислать комментарий     Решение


Задача 57248

 [Задача Брахмагупты]
Темы:   [ Теорема Птолемея ]
[ Четырехугольники (построения) ]
Сложность: 6
Классы: 8,9

Постройте вписанный четырехугольник по четырем сторонам (Брахмагупта).
Прислать комментарий     Решение


Задача 57825

Темы:   [ Параллельный перенос. Построения и геометрические места точек ]
[ Четырехугольники (построения) ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 6+
Классы: 8,9

Постройте четырехугольник по углам и диагоналям.
Прислать комментарий     Решение


Задача 54542

Темы:   [ ГМТ и вписанный угол ]
[ Признаки и свойства параллелограмма ]
[ Четырехугольники (построения) ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 3+
Классы: 8,9

С помощью циркуля и линейки постройте параллелограмм по углу и диагоналям.

Прислать комментарий     Решение


Задача 55635

Темы:   [ Симметрия помогает решить задачу ]
[ Симметрия и построения ]
[ Четырехугольники (построения) ]
Сложность: 4
Классы: 8,9

Постройте четырёхугольник ABCD по четырём сторонам, если известно, что его диагональ AC является биссектрисой угла A.

Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .