ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Преобразования плоскости
>>
Движения
>>
Осевая и скользящая симметрии
>>
Композиции симметрий
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) Противоположные стороны выпуклого шестиугольника ABCDEF попарно параллельны. Докажите, что этот шестиугольник вписанный тогда и только тогда, когда его диагонали AD, BE и CF равны. б) Докажите аналогичное утверждение для невыпуклого (возможно, самопересекающегося) шестиугольника. Решение |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 51]
После обеда на прозрачной квадратной скатерти остались тёмные пятна общей площади S. Оказалось, что если сложить скатерть пополам вдоль любой из двух линий, соединяющих середины противоположных её сторон, или же вдоль одной из двух её диагоналей, то общая видимая площадь пятен будет равна S1. Если же сложить скатерть пополам вдоль другой её диагонали, то общая видимая площадь пятен останется равна S. Какое наименьшее значение может принимать величина S1 : S?
б) Докажите аналогичное утверждение для невыпуклого (возможно, самопересекающегося) шестиугольника.
Пусть H и O – ортоцентр и центр описанной окружности треугольника ABC. Описанная окружность треугольника AOH, пересекает серединный перпендикуляр к BC в точке A1. Аналогично определяются точки B1 и C1. Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке.
Дан биллиард в форме правильного 1998-угольника A1A2...A1998. Из середины стороны A1A2 выпустили шар, который, отразившись последовательно от сторон A2A3, A3A4, ..., A1998A1 (по закону "угол падения равен углу отражения"), вернулся в исходную точку. Докажите, что траектория шара – правильный 1998-угольник.
На плоскости расположен круг. Какое наименьшее количество прямых надо провести, чтобы, симметрично отражая данный круг относительно этих прямых (в любом порядке конечное количество раз), можно было накрыть им любую заданную точку плоскости?
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 51] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|