Из точки M, лежащей внутри данного треугольника ABC, опущены
перпендикуляры MA1, MB1, MC1 на прямые BC, CA, AB. Для каких точек M внутри данного треугольника ABC величина принимает наименьшее значение?
Точки A1, B1 и C1 взяты на сторонах BC, CA и AB треугольника ABC, причём отрезки AA1, BB1 и CC1
пересекаются в одной точке M.
При каком положении точки M величина MA1/AA1·MB1/BB1·MC1/CC1 максимальна?
Из точки M, лежащей внутри данного треугольника ABC, опущены
перпендикуляры MA1, MB1, MC1 на прямые BC, CA, AB. Для каких точек M внутри данного треугольника ABC величина принимает наименьшее значение?
По кругу расставлено не менее четырёх неотрицательных чисел, в сумме равных
единице.
Докажите, что сумма всех попарных произведений соседних чисел не
больше ¼.