ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Внутри каждой стороны параллелограмма выбрано по точке. Выбранные точки сторон, имеющих общую вершину, соединены. Докажите, что центры описанных окружностей четырех получившихся треугольников являются вершинами некоторого параллелограмма.

   Решение

Задачи

Страница: << 90 91 92 93 94 95 96 >> [Всего задач: 1547]      



Задача 57036

Темы:   [ Подобные фигуры ]
[ Четырехугольники (прочее) ]
[ Преобразования подобия (прочее) ]
Сложность: 5+
Классы: 9,10

Четырехугольник ABCD выпуклый; точки  A1, B1, C1 и D1 таковы, что  AB||C1D1, AC||B1D1 и т. д. для всех пар вершин. Докажите, что четырехугольник  A1B1C1D1 тоже выпуклый, причем  $ \angle$A + $ \angle$C1 = 180o.
Прислать комментарий     Решение


Задача 78673

Темы:   [ Гомотетия помогает решить задачу ]
[ Задачи на движение ]
[ Метод координат на плоскости ]
Сложность: 5+
Классы: 8,9

Ковбой Джимми поспорил с друзьями, что сумеет одним выстрелом пробить все четыре лопасти вертилятора. (Вертилятор устроен следующим образом: на оси, вращающейся со скоростью 50 об/сек, расположены на равных расстояниях друг от друга четыре полудиска, повернутые друг относительно друга под какими-то углами). Джимми может стрелять в любой момент и добиваться произвольной скорости пуль. Доказать, что Джимми выиграет пари.

Прислать комментарий     Решение

Задача 66803

Темы:   [ Гомотетия помогает решить задачу ]
[ Проектирование (прочее) ]
Сложность: 5+
Классы: 9,10,11

Четырехугольник $ABCD$, вписанный в окружность $\omega$, таков что $AD=BD=AC$. Точка $P$ движется по $\omega$. Прямые $AP$ и $DP$ пересекают прямые $CD$ и $AB$ в точках $E$ и $F$ соответственно. Прямые $BE$ и $CF$ пересекаются в точке $Q$. Найдите геометрическое место точек $Q$.
Прислать комментарий     Решение


Задача 109806

Темы:   [ Свойства симметрии и центра симметрии ]
[ Признаки и свойства параллелограмма ]
[ Покрытия ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Гомотетичные многоугольники ]
Сложность: 5+
Классы: 8,9,10

Треугольник T содержится внутри выпуклого центрально-симметричного многоугольника M . Треугольник T' получается из треугольника T центральной симметрией относительно некоторой точки P , лежащей внутри треугольника T . Докажите, что хотя бы одна из вершин треугольника T' лежит внутри или на границе многоугольника M .
Прислать комментарий     Решение


Задача 57817

Тема:   [ Перенос помогает решить задачу ]
Сложность: 5+
Классы: 8,9

Внутри каждой стороны параллелограмма выбрано по точке. Выбранные точки сторон, имеющих общую вершину, соединены. Докажите, что центры описанных окружностей четырех получившихся треугольников являются вершинами некоторого параллелограмма.
Прислать комментарий     Решение


Страница: << 90 91 92 93 94 95 96 >> [Всего задач: 1547]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .