ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На плоскости дана замкнутая ломаная с конечным числом звеньев. Прямая l пересекает её ровно в 1985 точках. |
Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 629]
Замкнутая несамопересекающаяся кривая разбивает плоскость на две области: внутреннюю и внешнюю. Два человека отправляются по произвольным маршрутам из разных точек плоскости, причём ни один из них не знает, в какой из областей он находился.
Дети перебрасываются красными, белыми и синими мячами. Каждый ребенок бросил и поймал в сумме три мяча, причём это мячи различных цветов. Кроме того, некоторые три мяча были брошены, но никем не пойманы. Докажите, что эти три мяча – трёх различных цветов.
На плоскости дана замкнутая ломаная с конечным числом звеньев. Прямая l пересекает её ровно в 1985 точках.
Докажите, что доску размером 10×10 клеток нельзя разрезать на фигурки в форме буквы T, состоящие из четырёх клеток.
Город имеет форму квадрата 5×5: Какую наименьшую длину может иметь маршрут, если нужно пройти по каждой улице этого города и вернуться в прежнее место? (По каждой улице можно проходить любое число раз.)
Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 629] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|