ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

С помощью одного циркуля
  а) постройте точки пересечения данной окружности S и прямой, проходящей через данные точки A и B;
  б) постройте точку пересечения прямых A1B1 и A2B2, где A1, B1, A2 и B2 – данные точки.

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 58339

Темы:   [ Теорема Мора-Маскерони ]
[ Построения одним циркулем ]
Сложность: 4
Классы: 9,10,11

С помощью одного циркуля
  а) постройте точки пересечения данной окружности S и прямой, проходящей через данные точки A и B;
  б) постройте точку пересечения прямых A1B1 и A2B2, где A1, B1, A2 и B2 – данные точки.

Прислать комментарий     Решение

Задача 58337

Темы:   [ Теорема Мора-Маскерони ]
[ Построения одним циркулем ]
Сложность: 5
Классы: 9,10,11

С помощью одного циркуля постройте окружность, в которую переходит данная прямая AB при инверсии относительно данной окружности с данным центром O.
Прислать комментарий     Решение


Задача 58338

Темы:   [ Теорема Мора-Маскерони ]
[ Построения одним циркулем ]
Сложность: 6
Классы: 9,10,11

С помощью одного циркуля постройте окружность, проходящую через три данные точки.
Прислать комментарий     Решение


Задача 58333

Темы:   [ Построения одним циркулем ]
[ Теорема Мора-Маскерони ]
Сложность: 3
Классы: 9,10

а) Постройте с помощью одного циркуля отрезок, который в два раза длиннее данного отрезка.
б) Постройте с помощью одного циркуля отрезок, который в n раз длиннее данного отрезка.
Прислать комментарий     Решение


Задача 58334

Темы:   [ Построения одним циркулем ]
[ Теорема Мора-Маскерони ]
Сложность: 3
Классы: 9,10

Постройте с помощью одного циркуля точку, симметричную точке A относительно прямой, проходящей через данные точки B и C.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .