ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Аксиома индукции. Если известно, что некоторое утверждение верно для 1, и из предположения, что утверждение верно для некоторого n, вытекает его справедливость для n+1, то это утверждение верно для всех натуральных чисел. Докажите, что аксиома индукции равносильна любому из следующих утверждений: 1) всякое непустое подмножество натуральных чисел содержит наименьшее число; 2) всякое конечное непустое подмножество натуральных чисел содержит наибольшее число; 3) если некоторое множество натуральных чисел содержит 1 и вместе с каждым натуральным числом содержит следующее за ним, то оно содержит все натуральные числа; 4) если известно, что некоторое утверждение верно для некоторого a, и из предположения, что утверждение верно для всех натуральных чисел k, таких, что a k < n вытекает его справедливость для n, то это утверждение верно для всех натуральных чисел k a; 5) (Обратная индукция.) Если известно, что некоторое утверждение верно для 1 и 2, и из предположения, что утверждение верно для некоторого n > 1, вытекает его справедливость для 2n и n - 1, то это утверждение верно для всех натуральных чисел. Решение |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 328]
Докажите, что аксиома индукции равносильна любому из следующих утверждений: 1) всякое непустое подмножество натуральных чисел содержит наименьшее число; 2) всякое конечное непустое подмножество натуральных чисел содержит наибольшее число; 3) если некоторое множество натуральных чисел содержит 1 и вместе с каждым натуральным числом содержит следующее за ним, то оно содержит все натуральные числа; 4) если известно, что некоторое утверждение верно для некоторого a, и из предположения, что утверждение верно для всех натуральных чисел k, таких, что a k < n вытекает его справедливость для n, то это утверждение верно для всех натуральных чисел k a; 5) (Обратная индукция.) Если известно, что некоторое утверждение верно для 1 и 2, и из предположения, что утверждение верно для некоторого n > 1, вытекает его справедливость для 2n и n - 1, то это утверждение верно для всех натуральных чисел.
Даны натуральные числа x1, ..., xn. Докажите, что число можно представить в виде суммы квадратов двух целых чисел.
Вычислите произведение
Если есть только одна лошадь, то она своей масти, так что база индукции верна. Для индуктивного перехода предположим, что есть n лошадей (с номерами от 1 до n). По индуктивному предположению лошади с номерами от 1 до n - 1 одинаковой масти. Аналогично лошади с номерами от 2 до n также имеют одинаковую масть. Но лошади с номерами от 2 до n - 1 не могут менять свою масть в зависимости от того как они сгруппированы — это лошади, а не хамелеоны. Поэтому все n лошадей должны быть одинаковой масти. Есть ли ошибка в этом рассуждении, и если есть, то какая?
Петя умеет на любом отрезке отмечать точки, которые делят этот отрезок пополам или в отношении n : (n + 1), где n – любое натуральное число. Петя утверждает, что этого достаточно, чтобы на любом отрезке отметить точку, которая делит его в любом заданном рациональном отношении. Прав ли он?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 328] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|