ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Как изменяется двойное отношение  W(z1, z2, z3, z4)  при действии отображения  ?

   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 21]      



Задача 61153

Тема:   [ Преобразования комплексной плоскости (прочее) ]
Сложность: 3+
Классы: 9,10,11

Представить гомотетию    с центром в точке i с коэффициентом 2 в виде композиции параллельного переноса и гомотетии с центром в точке O.

Прислать комментарий     Решение

Задача 61160

Тема:   [ Дробно-линейные преобразования ]
Сложность: 3+
Классы: 10,11

Докажите, что дробно-линейные отображения являются взаимно-однозначными отображениями расширенной комплексной плоскости.

Прислать комментарий     Решение

Задача 61181

 [Инвариантность двойного отношения]
Темы:   [ Дробно-линейные преобразования ]
[ Геометрия комплексной плоскости ]
Сложность: 3+
Классы: 10,11

Двойным отношением четырёх комплесных чисел называется число     (см. задачу 61180). Пусть w1, w2, w3, w4 – четыре точки плоскости, в которые дробно-линейное отображение    переводит данные четыре точки z1, z2, z3, z4. Докажите, что
W(w1, w2, w3, w4) = W(z1, z2, z3, z4).

Прислать комментарий     Решение

Задача 61182

Тема:   [ Дробно-линейные преобразования ]
Сложность: 3+
Классы: 10,11

Как изменяется двойное отношение  W(z1, z2, z3, z4)  при действии отображения  ?

Прислать комментарий     Решение

Задача 61187

Темы:   [ Дробно-линейные преобразования ]
[ Инверсия (прочее) ]
Сложность: 3+
Классы: 10,11

Представьте в виде композиции дробно-линейного отображения   w =   и комплексного сопряжения   w = z  инверсию относительно окружности
  а) с центром i и радиусом R = 1;
  б) с центром  Reiφ  и радиусом R;
  в) с центром z0 и радиусом R.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 21]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .