ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Изобразите на фазовой плоскости Opq множество точек  (p, q),  для которых уравнение  x³ + px + q = 0  имеет три различных корня, принадлежащих интервалу  (–2, 4).

   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 53]      



Задача 109942

Темы:   [ Процессы и операции ]
[ Методы решения задач с параметром ]
[ Тригонометрические уравнения ]
Сложность: 4-
Классы: 9,10,11

Пусть f(x)=x2+ax+b cos x . Найдите все значения параметров a и b , при которых уравнения f(x)=0 и f(f(x))=0 имеют совпадающие непустые множества действительных корней.
Прислать комментарий     Решение


Задача 61272

Темы:   [ Кубические многочлены ]
[ Методы решения задач с параметром ]
[ Фазовая плоскость коэффициентов ]
[ Исследование квадратного трехчлена ]
Сложность: 4
Классы: 10,11

Изобразите на фазовой плоскости Opq множества точек  (p, q),  для которых уравнение  x³ + px + q = 0  имеет
  а) один корень;   б) два корня;   в) три различных корня;   г) три совпадающих корня.

Прислать комментарий     Решение

Задача 61274

Темы:   [ Кубические многочлены ]
[ Методы решения задач с параметром ]
[ Фазовая плоскость коэффициентов ]
Сложность: 4
Классы: 10,11

Изобразите на фазовой плоскости Opq множество точек  (p, q),  для которых уравнение  x³ + px + q = 0  имеет три различных корня, принадлежащих интервалу  (–2, 4).

Прислать комментарий     Решение

Задача 61348

Темы:   [ Системы линейных уравнений ]
[ Методы решения задач с параметром ]
[ Теорема Безу. Разложение на множители ]
[ Геометрические интерпретации в алгебре ]
Сложность: 4
Классы: 9,10,11

Исследуйте системы уравнений:

а)

б)

в)

г)

д)

е)

Прислать комментарий     Решение

Задача 61273

Темы:   [ Кубические многочлены ]
[ Методы решения задач с параметром ]
[ Фазовая плоскость коэффициентов ]
Сложность: 4+
Классы: 10,11

Изобразите на фазовой плоскости Opq множества точек  (p, q),  для которых все корни уравнения  x³ + px + q = 0  не превосходят по модулю 1.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 53]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .