ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите у чисел   а)  (6 + )1999;   б)  (6 + )1999;   в)  (6 + )2000   первые 1000 знаков после запятой.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 36]      



Задача 60862

Тема:   [ Доказательство тождеств. Преобразования выражений ]
Сложность: 3
Классы: 8,9,10

Формула сложного радикала. Докажите равенство:

$\displaystyle \sqrt{a\pm\sqrt{b}}$ = $\displaystyle \sqrt{\frac{a+\sqrt{a^2-b}}{2}}$±$\displaystyle \sqrt{\frac{a-\sqrt{a^2-b}}{2}}$.


Прислать комментарий     Решение

Задача 60856

Темы:   [ Квадратные корни (прочее) ]
[ Арифметическая прогрессия ]
Сложность: 3+
Классы: 8,9,10

Пусть a, b, c — различные простые числа. Докажите, что числа $ \sqrt{a}$, $ \sqrt{b}$, $ \sqrt{c}$ не могут быть членами одной арифметической прогрессии.

Прислать комментарий     Решение

Задача 61477

Темы:   [ Квадратные корни (прочее) ]
[ Десятичные дроби ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 3+
Классы: 10,11

Найдите у чисел   а)  (6 + )1999;   б)  (6 + )1999;   в)  (6 + )2000   первые 1000 знаков после запятой.

Прислать комментарий     Решение

Задача 64993

Темы:   [ Доказательство тождеств. Преобразования выражений ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3+
Классы: 7,8,9,10

Упростите выражение (избавьтесь от как можно большего количества знаков корней):    .

Прислать комментарий     Решение

Задача 109501

Темы:   [ Квадратные корни (прочее) ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 3+
Классы: 7,8,9

Дано натуральное число $N$. Для того чтобы найти целое число, ближайшее к $\sqrt{N}$, воспользуемся следующим способом: найдём среди квадратов натуральных чисел число $a^2$, ближайшее к числу $N$; тогда $a$ и будет искомым числом. Обязательно ли этот способ даст правильный ответ?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 36]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .