ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что при  n > 0  многочлен  x2n+1 – (2n + 1)xn+1 + (2n + 1)xn – 1  делится на  (x – 1)³.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 92]      



Задача 61025

Тема:   [ Производная и кратные корни ]
Сложность: 3+
Классы: 8,9,10,11

Докажите, что при  n > 0  многочлен  nxn+1 – (n + 1)n  + 1  делится на  (x – 1)2.

Прислать комментарий     Решение

Задача 64410

Тема:   [ Производная и кратные корни ]
Сложность: 3+
Классы: 10,11

Докажите, что при  n > 0  многочлен  P(x) = n²xn+2 – (2n² + 2n – 1)xn+1 + (n + 1)²xn – x – 1  делится на  (x – 1)³.

Прислать комментарий     Решение

Задача 64411

Тема:   [ Производная и кратные корни ]
Сложность: 3+
Классы: 10,11

Докажите, что при  n > 0  многочлен  x2n+1 – (2n + 1)xn+1 + (2n + 1)xn – 1  делится на  (x – 1)³.

Прислать комментарий     Решение

Задача 61332

Темы:   [ Производная и касательная ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 10,11

Метод Ньютона (см. задачу 9.77) не всегда позволяет приблизиться к корню уравнения f (x) = 0. Для многочлена f (x) = x(x - 1)(x + 1) найдите начальное условие x0 такое, что f (x0)$ \ne$x0 и x2 = x0.

Прислать комментарий     Решение

Задача 61407

Тема:   [ Выпуклость и вогнутость ]
Сложность: 3+
Классы: 10,11

Неравенство Иенсена. Докажите, что если функция f (x) выпукла вверх на отрезке [a;b], то для любых различных точек x1, x2, ..., xn ( n $ \geqslant$ 2) из [a;b] и любых положительных $ \alpha_{1}^{}$, $ \alpha_{2}^{}$, ..., $ \alpha_{n}^{}$ таких, что $ \alpha_{1}^{}$ + $ \alpha_{2}^{}$ +...+ $ \alpha_{n}^{}$ = 1, выполняется неравенство:

f ($\displaystyle \alpha_{1}^{}$x1 +...+ $\displaystyle \alpha_{n}^{}$xn) > $\displaystyle \alpha_{1}^{}$f (x1) +...+ $\displaystyle \alpha_{n}^{}$f (xn).


Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 92]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .