ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Число    представили в виде несократимой дроби.
Докажите, что если  3n + 1  – простое число, то числитель получившейся дроби делится на  3n + 1.

   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 125]      



Задача 64438

Темы:   [ Обыкновенные дроби ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10,11

Отличник Вася складывает обыкновенные дроби без ошибок, а Петя складывает дроби так: в числитель пишет сумму числителей, а в знаменатель – сумму знаменателей. Учительница предложила ребятам сложить три несократимые дроби. У Васи получился правильный ответ 1. Мог ли у Пети получиться ответ меньше 1/10?

Прислать комментарий     Решение

Задача 65061

Темы:   [ Обыкновенные дроби ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9

При всяком ли натуральном  n > 2009  из дробей    можно выбрать две пары дробей с одинаковыми суммами?

Прислать комментарий     Решение

Задача 109580

Темы:   [ Обыкновенные дроби ]
[ Инварианты ]
[ НОД и НОК. Взаимная простота ]
[ Процессы и операции ]
Сложность: 4-
Классы: 7,8,9,10

Имеется семь стаканов с водой: первый стакан заполнен водой наполовину, второй – на треть, третий – на четверть, четвёртый – на ⅕, пятый – на ⅛, шестой – на 1/9, и седьмой – на 1/10. Разрешается переливать всю воду из одного стакана в другой или переливать воду из одного стакана в другой до тех пор, пока он не заполнится доверху. Может ли после нескольких переливаний какой-нибудь стакан оказаться заполненным   а) на 1/12;   б) на ⅙?

Прислать комментарий     Решение

Задача 110144

Темы:   [ Обыкновенные дроби ]
[ НОД и НОК. Взаимная простота ]
[ Разложение на множители ]
Сложность: 4-
Классы: 7,8,9

Для некоторых натуральных чисел a, b, c и d выполняются равенства  a/c = b/d = ab+1/cd+1.  Докажите, что  a = c  и  b = d.

Прислать комментарий     Решение

Задача 64453

Темы:   [ Обыкновенные дроби ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Простые числа и их свойства ]
Сложность: 4
Классы: 8,9,10

Число    представили в виде несократимой дроби.
Докажите, что если  3n + 1  – простое число, то числитель получившейся дроби делится на  3n + 1.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 125]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .