ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Про различные числа a и b известно, что   . Найдите  .

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 104]      



Задача 61261

Тема:   [ Тождественные преобразования ]
Сложность: 3
Классы: 8,9,10

Докажите, что   (a² + b² + c² – ab – bc – ac)(x² + y² + z² – xy – yz – xz) = X² + Y² + Z² – XY – YZ – XZ,

если   X = ax + cy + bz,   Y = cx + by + az,   Z = bx + ay + cz.

Прислать комментарий     Решение

Задача 64534

Темы:   [ Тождественные преобразования ]
[ Разложение на множители ]
Сложность: 3
Классы: 7,8,9

Про различные числа a и b известно, что   . Найдите  .

Прислать комментарий     Решение

Задача 65510

Тема:   [ Тождественные преобразования ]
Сложность: 3
Классы: 8,9

Известно, что  a² + b = b² + c = c² + a.  Какие значения может принимать выражение  a(a² – b²) + b(b² – c²) + c(c² – a²)?

Прислать комментарий     Решение

Задача 86502

Темы:   [ Тождественные преобразования ]
[ Неравенство Коши ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3
Классы: 8,9

Укажите все пары  (x; y),  для которых выполняется равенство   (x4 + 1)(y4 + 1) = 4x²y².

Прислать комментарий     Решение

Задача 97964

Темы:   [ Тождественные преобразования ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3
Классы: 7,8

Автор: Фольклор

a, b и c – целые числа. Докажите, что если  a = b + c,  то  a4 + b4 + c4  есть удвоенный квадрат целого числа.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 104]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .