ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На сторонах BC и CD квадрата ABCD отмечены точки M и K соответственно так, что  ∠BAM = ∠CKM = 30°.  Найдите ∠AKD.

   Решение

Задачи

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 993]      



Задача 64537

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Признаки равенства прямоугольных треугольников ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Свойства биссектрис, конкуррентность ]
Сложность: 3+
Классы: 8,9

На сторонах BC и CD квадрата ABCD отмечены точки M и K соответственно так, что  ∠BAM = ∠CKM = 30°.  Найдите ∠AKD.

Прислать комментарий     Решение

Задача 64547

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+

Точка F – середина стороны BC квадрата ABCD. К отрезку DF проведён перпендикуляр AE. Найдите угол CEF.

Прислать комментарий     Решение

Задача 64580

Темы:   [ Ромбы. Признаки и свойства ]
[ Три точки, лежащие на одной прямой ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

На стороне CD ромба ABCD нашлась такая точка K, что  AD = BK.  Пусть F – точка пересечения диагонали BD и серединного перпендикуляра к стороне BC. Докажите, что точки A, F и K лежат на одной прямой.

Прислать комментарий     Решение

Задача 64602

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Симметрия помогает решить задачу ]
[ Выпуклые многоугольники ]
Сложность: 3+
Классы: 9,10,11

Даны выпуклый многоугольник и квадрат. Известно, что как ни расположи две копии многоугольника внутри квадрата, найдётся точка, принадлежащая обеим копиям. Докажите, что как ни расположи три копии многоугольника внутри квадрата, найдётся точка, принадлежащая всем трём копиям.

Прислать комментарий     Решение

Задача 64710

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Три прямые, пересекающиеся в одной точке ]
[ Конкуррентность высот. Углы между высотами. ]
[ Две пары подобных треугольников ]
Сложность: 3+
Классы: 8,9

В прямоугольнике ABCD точка M – середина стороны CD. Через точку C провели прямую, перпендикулярную прямой BM, а через точку M – прямую, перпендикулярную диагонали BD. Докажите, что два проведённых перпендикуляра пересекаются на прямой AD.

Прислать комментарий     Решение

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 993]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .