ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На стороне AB квадрата ABCD отмечена точка K, а на стороне BC – точка L так, что  KB = LC. Отрезки AL и CK пересекаются в точке P.
Докажите, что отрезки DP и KL перпендикулярны.

   Решение

Задачи

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 993]      



Задача 64750

Темы:   [ Признаки и свойства параллелограмма ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 3+

Дан параллелограмм ABCD. На стороне AB взята точка M так, что  AD = DM.  На стороне AD взята точка N так, что  AB = BN.
Докажите, что  CM = CN.

Прислать комментарий     Решение

Задача 64812

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
[ Проекция на прямую (прочее) ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+
Классы: 8,9,10

Вершины равнобедренного треугольника и центр его описанной окружности лежат на четырёх различных сторонах квадрата.
Найдите углы треугольника.

Прислать комментарий     Решение

Задача 64818

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Признаки равенства прямоугольных треугольников ]
[ Поворот помогает решить задачу ]
Сложность: 3+
Классы: 8,9

На сторонах квадрата отложили четыре равных отрезка (как на рисунке). Докажите, что два отмеченных угла равны.

Прислать комментарий     Решение

Задача 64839

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Конкуррентность высот. Углы между высотами. ]
[ Поворот помогает решить задачу ]
Сложность: 3+
Классы: 8,9

На стороне AB квадрата ABCD отмечена точка K, а на стороне BC – точка L так, что  KB = LC. Отрезки AL и CK пересекаются в точке P.
Докажите, что отрезки DP и KL перпендикулярны.

Прислать комментарий     Решение

Задача 64865

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Невыпуклые многоугольники ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

Автор: Кноп К.А.

Есть бумажный квадрат со стороной 2. Можно ли вырезать из него 12-угольник, у которого длины всех сторон равны 1, а все углы кратны 45°?

Прислать комментарий     Решение

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 993]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .