ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Окружности ω1 и ω2, касающиеся внешним образом в точке L, вписаны в угол BAC. Окружность ω1 касается луча AB в точке E, а окружность ω2 – луча AC в точке M. Прямая EL пересекает повторно окружность ω2 в точке Q. Докажите, что MQ || AL. ![]() |
Страница: << 123 124 125 126 127 128 129 >> [Всего задач: 1024]
Докажите, что если радиус вневписанной окружности равен полупериметру треугольника, то этот треугольник — прямоугольный.
Прямая OA касается окружности в точке A, а хорда BC
параллельна OA. Прямые OB и OC вторично пересекают окружность в точках K и L.
Из точки A к окружности радиусом R проводится касательная AM (M — точка касания). Секущая, проходящая через точку A, пересекает окружность в точках K и L, причём L — середина отрезка AK, а угол AMK равен 60o. Найдите площадь треугольника AMK.
С помощью циркуля и линейки впишите в треугольник две равные окружности, каждая из которых касается двух сторон треугольника и другой окружности.
Окружности ω1 и ω2, касающиеся внешним образом в точке L, вписаны в угол BAC. Окружность ω1 касается луча AB в точке E, а окружность ω2 – луча AC в точке M. Прямая EL пересекает повторно окружность ω2 в точке Q. Докажите, что MQ || AL.
Страница: << 123 124 125 126 127 128 129 >> [Всего задач: 1024] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |