ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть AP и BQ – высоты данного остроугольного треугольника ABC. Постройте циркулем и линейкой на стороне AB точку M так, чтобы
AQM = ∠BPM.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 43]      



Задача 54644

Темы:   [ Построения (прочее) ]
[ Симметрия помогает решить задачу ]
Сложность: 3
Классы: 8,9

Автор: Охитин С.

Дан треугольник ABC. Найдите на стороне AC такую точку D, чтобы периметр треугольника ABD равнялся длине стороны BC.

Прислать комментарий     Решение

Задача 54650

Темы:   [ Построения (прочее) ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 3
Классы: 8,9

На плоскости даны две прямые и точка M. Найдите на одной из прямых такую точку X, что отрезок MX делится другой прямой пополам.

Прислать комментарий     Решение

Задача 57262

Тема:   [ Построения (прочее) ]
Сложность: 3
Классы: 8,9

а) На параллельных прямых a и b даны точки A и B. Проведите через данную точку C прямую l, пересекающую прямые a и b в таких точках A1 и B1, что AA1 = BB1.
б) Проведите через точку C прямую, равноудаленную от данных точек A и B.
Прислать комментарий     Решение


Задача 53904

Темы:   [ Построения (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Биссектриса угла ]
Сложность: 3+
Классы: 8,9

На одной из сторон данного острого угла лежит точка A. Постройте на этой же стороне угла точку, равноудаленную от второй стороны угла и от точки A.

Прислать комментарий     Решение

Задача 65038

Темы:   [ Построения (прочее) ]
[ Вписанный угол, опирающийся на диаметр ]
[ Угол между касательной и хордой ]
Сложность: 3+
Классы: 8,9,10

Пусть AP и BQ – высоты данного остроугольного треугольника ABC. Постройте циркулем и линейкой на стороне AB точку M так, чтобы
AQM = ∠BPM.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 43]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .