ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Впишите вместо звёздочек шесть различных цифр так, чтобы все дроби были несократимыми, а равенство верным:  .

   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 125]      



Задача 65605

Темы:   [ Обыкновенные дроби ]
[ Примеры и контрпримеры. Конструкции ]
[ Перебор случаев ]
Сложность: 3+
Классы: 5,6,7

Впишите вместо звёздочек шесть различных цифр так, чтобы все дроби были несократимыми, а равенство верным:  .

Прислать комментарий     Решение

Задача 65634

Темы:   [ Обыкновенные дроби ]
[ Арифметическая прогрессия ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 6,7,8

Мальвина записала по порядку 2016 обыкновенных правильных дробей: ½, ⅓, ⅔, ¼, 2/4, ¾, ... (в том числе, и сократимые). Дроби, значение которых меньше чем ½, она покрасила в красный цвет, а остальные дроби – в синий. На сколько количество красных дробей меньше количества синих?

Прислать комментарий     Решение

Задача 65954

Темы:   [ Обыкновенные дроби ]
[ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

В выражении   10 : 9 : 8 : 7 : 6 : 5 : 4 : 3 : 2 : 1   расставили скобки так, что значение выражения оказалось целым числом.
Какое наименьшее число могло получиться?

Прислать комментарий     Решение

Задача 66062

Темы:   [ Обыкновенные дроби ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 6,7

Можно ли в равенстве     заменить звездочки цифрами от 1 до 9, взятыми по одному разу, так, чтобы равенство стало верным?

Прислать комментарий     Решение

Задача 78063

Темы:   [ Обыкновенные дроби ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9

Найти все числа, на которые может быть сократима при целом значении l дробь  .

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 125]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .