ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На острове живут лжецы, которые всегда лгут, и рыцари, которые всегда говорят правду. Каждый из них сделал по два заявления: 1) "Среди моих друзей – нечётное количество рыцарей"; 2) "Среди моих друзей – чётное количество лжецов". Чётно или нечётно количество жителей острова?

   Решение

Задачи

Страница: << 59 60 61 62 63 64 65 >> [Всего задач: 383]      



Задача 34851

Темы:   [ Принцип Дирихле (прочее) ]
[ Сочетания и размещения ]
[ Ориентированные графы ]
Сложность: 3
Классы: 7,8,9

В дискуссии приняли участие 15 депутатов. Каждый из них в своем выступлении раскритиковал ровно k из оставшихся 14 депутатов.
При каком наименьшем k можно утверждать, что найдутся два депутата, которые раскритиковали друг друга?

Прислать комментарий     Решение

Задача 35363

Темы:   [ Обход графов ]
[ Обходы многогранников ]
[ Степень вершины ]
[ Четность и нечетность ]
Сложность: 3
Классы: 7,8,9

Жук ползёт по рёбрам куба. Сможет ли он последовательно обойти все рёбра, проходя по каждому ребру ровно один раз?

Прислать комментарий     Решение

Задача 65661

Темы:   [ Математическая логика (прочее) ]
[ Четность и нечетность ]
[ Степень вершины ]
Сложность: 3
Классы: 7,8,9

На острове живут лжецы, которые всегда лгут, и рыцари, которые всегда говорят правду. Каждый из них сделал по два заявления: 1) "Среди моих друзей – нечётное количество рыцарей"; 2) "Среди моих друзей – чётное количество лжецов". Чётно или нечётно количество жителей острова?

Прислать комментарий     Решение

Задача 79438

Темы:   [ Сочетания и размещения ]
[ Доказательство от противного ]
[ Связность и разложение на связные компоненты ]
Сложность: 3
Классы: 8,9,10

Двадцать городов соединены 172 авиалиниями.
Доказать, что, используя эти авиалинии, можно из любого города перелететь в любой другой (быть может, делая пересадки).

Прислать комментарий     Решение

Задача 98166

Темы:   [ Наглядная геометрия в пространстве ]
[ Остовы многогранных фигур ]
[ Обход графов ]
[ Шахматная раскраска ]
[ Четность и нечетность ]
Сложность: 3
Классы: 6,7,8

Муравей ползает по проволочному каркасу куба, при этом он никогда не поворачивает назад.
Может ли случиться, что в одной вершине он побывал 25 раз, а в каждой из остальных – по 20 раз?

Прислать комментарий     Решение

Страница: << 59 60 61 62 63 64 65 >> [Всего задач: 383]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .