ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На 2016 красных и 2016 синих карточках написаны положительные числа, все они различны. Известно, что на карточках какого-то одного цвета написаны попарные суммы каких-то 64 чисел, а на карточках другого цвета – попарные произведения тех же 64 чисел. Всегда ли можно определить, на карточках какого цвета написаны попарные суммы? ![]() |
Страница: << 109 110 111 112 113 114 115 >> [Всего задач: 590]
На 2016 красных и 2016 синих карточках написаны положительные числа, все они различны. Известно, что на карточках какого-то одного цвета написаны попарные суммы каких-то 64 чисел, а на карточках другого цвета – попарные произведения тех же 64 чисел. Всегда ли можно определить, на карточках какого цвета написаны попарные суммы?
Улитка ползёт с непостоянной скоростью. Несколько человек наблюдало за ней по очереди в течение 6 минут. Каждый начинал наблюдать раньше, чем кончал предыдущий, и наблюдал ровно 1 минуту. За эту минуту улитка проползла ровно 1 м. Доказать, что за все 6 минут улитка могла проползти самое большее 10 м.
Грани кубика занумерованы 1, 2, 3, 4, 5, 6, так, что сумма номеров на противоположных гранях кубика равна 7. Дана шахматная доска 50×50 клеток, каждая клетка равна грани кубика. Кубик перекатывается из левого нижнего угла доски в правый верхний. При перекатывании он каждый раз переваливается через свое ребро на соседнюю клетку, при этом разрешается двигаться только вправо или вверх (нельзя двигаться влево или вниз). На каждой из клеток на пути кубика имеется номер грани, которая опиралась на эту клетку. Какое наибольшее значение может принимать сумма всех написанных чисел? Какое наименьшее значение она может принимать?
Дана таблица n×n, заполненная числами по следующему правилу: в клетке, стоящей в i-й строке и j-м столбце таблицы записано число
В параллелограмм P1 вписан параллелограмм P2, а в параллелограмм P2 вписан параллелограмм P3, стороны которого параллельны сторонам P1. Докажите, что длина хотя бы одной из сторон P1 не превосходит удвоенной длины параллельной ей стороны P3.
Страница: << 109 110 111 112 113 114 115 >> [Всего задач: 590] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |