ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Петя поставил на доску 50×50 несколько фишек, в каждую клетку – не больше одной. Докажите, что у Васи есть способ поставить на свободные поля этой же доски не более 99 новых фишек (возможно, ни одной) так, чтобы по-прежнему в каждой клетке стояло не больше одной фишки, и в каждой строке и каждом столбце этой доски оказалось чётное количество фишек.

Вниз   Решение


У одного островного племени есть обычай – во время ритуального танца шаман подбрасывает высоко вверх три тонких прямых прута одинаковой длины, связанных в подобие буквы П. Соседние прутья связаны короткой ниткой и поэтому свободно вращаются друг относительно друга. Прутья падают на песок, образуя случайную фигуру. Если получается самопересечение (первый и третий прутья перекрещиваются), то племя в наступающем году ждут неурожаи и всякие неприятности. Если же самопересечения нет, то год будет удачным – сытным и счастливым. Найдите вероятность того, что на 2017 год прутья напророчат удачу.

Вверх   Решение

Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 113]      



Задача 109770

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Метод координат на плоскости ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

На шахматной доске стоят восемь ладей, не бьющих друг друга. Докажите, что среди попарных расстояний между ними найдутся два одинаковых. (Расстояние между ладьями – это расстояние между центрами клеток, в которых они стоят.)

Прислать комментарий     Решение

Задача 54405

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Метод координат на плоскости ]
Сложность: 3+
Классы: 8,9

Докажите, что сумма квадратов расстояний от произвольной точки плоскости до двух противоположных вершин прямоугольника равна сумме квадратов расстояний от этой точки до двух других вершин прямоугольника.

Прислать комментарий     Решение


Задача 55626

Темы:   [ Свойства симметрии и центра симметрии ]
[ Метод координат на плоскости ]
Сложность: 4-
Классы: 8,9

Фигура имеет две перпендикулярные оси симметрии. Верно ли, что она имеет центр симметрии?

Прислать комментарий     Решение


Задача 109907

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Метод координат на плоскости ]
[ Свойства симметрий и осей симметрии ]
[ Метод ГМТ ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 4-
Классы: 8,9,10,11

Все вершины треугольника ABC лежат внутри квадрата K . Докажите, что если все их отразить симметрично относительно точки пересечения медиан треугольника ABC , то хотя бы одна из полученных трех точек окажется внутри K .
Прислать комментарий     Решение


Задача 66054

Темы:   [ Непрерывное распределение ]
[ Метод координат на плоскости ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 4-
Классы: 9,10,11

У одного островного племени есть обычай – во время ритуального танца шаман подбрасывает высоко вверх три тонких прямых прута одинаковой длины, связанных в подобие буквы П. Соседние прутья связаны короткой ниткой и поэтому свободно вращаются друг относительно друга. Прутья падают на песок, образуя случайную фигуру. Если получается самопересечение (первый и третий прутья перекрещиваются), то племя в наступающем году ждут неурожаи и всякие неприятности. Если же самопересечения нет, то год будет удачным – сытным и счастливым. Найдите вероятность того, что на 2017 год прутья напророчат удачу.

Прислать комментарий     Решение

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 113]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .