ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Незнайка утверждает, что он может провести на плоскости 4 прямые так, чтобы их суммарное количество точек пересечения равнялось пяти и 5 прямых так, чтобы их суммарное количество точек пересечения равнялось четырем. Прав ли он? Решение |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 298]
Незнайка утверждает, что он может провести на плоскости 4 прямые так, чтобы их суммарное количество точек пересечения равнялось пяти и 5 прямых так, чтобы их суммарное количество точек пересечения равнялось четырем. Прав ли он?
Существуют ли два многоугольника, у которых все вершины общие, но нет ни одной общей стороны?
Какое наибольшее количество точек самопересечения может иметь замкнутая ломаная, в которой 7 звеньев?
Петя отметил на плоскости несколько (больше двух) точек, все расстояния между которыми различны. Пару отмеченных точек (A, B) назовём необычной, если A – самая дальняя от B отмеченная точка, а B – ближайшая к A отмеченная точка (не считая самой точки A). Какое наибольшее возможное количество необычных пар могло получиться у Пети?
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 298] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|