ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что для любого нечётного натурального числа a существует такое натуральное число b, что  2b – 1  делится на a.

   Решение

Задачи

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 367]      



Задача 73597

Темы:   [ Деление с остатком ]
[ Принцип Дирихле (прочее) ]
[ Теорема Эйлера ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9,10

Докажите, что для любого нечётного натурального числа a существует такое натуральное число b, что  2b – 1  делится на a.

Прислать комментарий     Решение

Задача 76543

Темы:   [ Деление с остатком ]
[ Принцип Дирихле (прочее) ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 7,8,9,10

Докажите, что каково бы ни было целое число n, среди чисел n,  n + 1,  n + 2,  ...,  n + 9  есть хотя бы одно, взаимно простое с остальными девятью.

Прислать комментарий     Решение

Задача 78494

Темы:   [ Числовые таблицы и их свойства ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9

В таблицу 8×8 вписаны все целые числа от 1 до 64. Доказать, что при этом найдутся два соседних числа, разность между которыми не меньше 5. (Соседними называются числа, стоящие в клетках, имеющих общую сторону.)

Прислать комментарий     Решение

Задача 78501

Темы:   [ Числовые таблицы и их свойства ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 9,10

В таблицу 9×9 вписаны все целые числа от 1 до 81. Доказать, что найдутся два соседних числа, разность между которыми не меньше 6.

Прислать комментарий     Решение

Задача 78578

Темы:   [ Арифметика остатков (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9,10

Все целые числа от 1 до 2n выписаны в строчку. Затем к каждому числу прибавили номер того места, на котором оно стоит.
Доказать, что среди полученных сумм найдутся хотя бы две, дающие при делении на 2n одинаковый остаток.

Прислать комментарий     Решение

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 367]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .