Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 62]
а) Даны окружности
S1 и
S2, пересекающиеся
в точках
A и
B. Проведите через точку
A прямую
l так,
чтобы отрезок этой прямой, заключенный внутри окружностей
S1
и
S2, имел данную длину.
б) Впишите в данный треугольник
ABC треугольник,
равный данному треугольнику
PQR.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Найти геометрическое место середин отрезков с концами на двух различных
непересекающихся окружностях, лежащих одна вне другой.
Дана окружность и её хорда
AB . Для всех точек
C окружности,
отличных от
A и
B рассматриваются параллелограммы
ABCD .
Найдите геометрическое место: а) точек
D ; б) центров параллелограммов
ABCD .
|
|
Сложность: 4+ Классы: 8,9,10
|
Докажите, что среди четырехугольников с заданными длинами диагоналей и углом между ними наименьший периметр имеет параллелограмм.
|
|
Сложность: 4+ Классы: 8,9,10
|
Дан отрезок AB. Найдите на плоскости множество таких точек C,
что медиана треугольника ABC, проведённая из вершины A, равна
высоте, проведённой из вершины B.
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 62]