ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Улитка ползёт с непостоянной скоростью. Несколько человек наблюдало за ней по очереди в течение 6 минут. Каждый начинал наблюдать раньше, чем кончал предыдущий, и наблюдал ровно 1 минуту. За эту минуту улитка проползла ровно 1 м. Доказать, что за все 6 минут улитка могла проползти самое большее 10 м.

   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 71]      



Задача 35644

Темы:   [ Счетные и несчетные подмножества ]
[ Покрытия ]
Сложность: 4
Классы: 10,11

Докажите, что рациональные числа из отрезка [0;1] можно покрыть системой интервалов суммарной длины не больше 1/1000.
Прислать комментарий     Решение


Задача 78227

Темы:   [ Задачи на движение ]
[ Покрытия ]
[ Примеры и контрпримеры. Конструкции ]
[ Линейные неравенства и системы неравенств ]
Сложность: 4
Классы: 8,9,10

Улитка ползёт с непостоянной скоростью. Несколько человек наблюдало за ней по очереди в течение 6 минут. Каждый начинал наблюдать раньше, чем кончал предыдущий, и наблюдал ровно 1 минуту. За эту минуту улитка проползла ровно 1 м. Доказать, что за все 6 минут улитка могла проползти самое большее 10 м.

Прислать комментарий     Решение

Задача 110025

Темы:   [ Цилиндр ]
[ Покрытия ]
[ Шар и его части ]
Сложность: 4
Классы: 10,11

Высота и радиус основания цилиндра равны 1. Каким наименьшим числом шаров радиуса 1 можно целиком покрыть этот цилиндр?
Прислать комментарий     Решение


Задача 78497

Темы:   [ Задачи на движение ]
[ Покрытия ]
Сложность: 4+
Классы: 8,9,10

По аллее длиной 100 метров идут три человека со скоростями 1, 2 и 3 км/ч. Дойдя до конца аллеи, каждый из них поворачивает и идёт назад с той же скоростью. Доказать, что найдётся отрезок времени в 1 минуту, когда все трое будут идти в одном направлении.

Прислать комментарий     Решение

Задача 109572

Темы:   [ Геометрия на клетчатой бумаге ]
[ Покрытия ]
[ Индукция в геометрии ]
Сложность: 4+
Классы: 8,9,10

Автор: Перлин А.

Плоскость разбита двумя семействами параллельных прямых на единичные квадратики. Назовем каемкой квадрата n ×n, состоящего из квадратиков разбиения, объединение тех квадратиков, которые хотя бы одной из своих сторон примыкают изнутри к его границе. Докажите, что существует ровно один способ покрытия квадрата 100×100 , состоящего из квадратиков разбиения, неперекрывающимися каемками пятидесяти квадратов. (Каемки могут и не содержаться в квадрате 100× 100 .)
Прислать комментарий     Решение


Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 71]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .