ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Два равных конуса имеют общую высоту. Плоскости их оснований параллельны. Докажите, что объём общей части конусов равен четверти объёма каждого из них.

   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 17]      



Задача 30910

Темы:   [ Объем шара, сегмента и проч. ]
[ Объем круглых тел ]
Сложность: 3
Классы: 6,7

Представьте себе, что Землю "раскатали в колбаску" так, чтобы она достала до Солнца.
Какой толщины будет эта "колбаска"? Постарайтесь ошибиться не более чем в 10 раз.

Прислать комментарий     Решение

Задача 87127

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Объем круглых тел ]
Сложность: 3
Классы: 8,9

Периметр равнобедренного треугольника равен P . Каковы должны быть его стороны, чтобы объём фигуры, полученной вращением этого треугольника вокруг основания, был наибольшим?
Прислать комментарий     Решение


Задача 87270

Темы:   [ Конус ]
[ Объем круглых тел ]
Сложность: 3
Классы: 8,9

Два равных конуса имеют общую высоту. Плоскости их оснований параллельны. Докажите, что объём общей части конусов равен четверти объёма каждого из них.
Прислать комментарий     Решение


Задача 87271

Темы:   [ Конус ]
[ Объем круглых тел ]
Сложность: 3
Классы: 8,9

Докажите, что объём конуса равен третьей части произведения боковой поверхности на расстояние от центра основания до образующей.
Прислать комментарий     Решение


Задача 87454

Темы:   [ Тела вращения ]
[ Объем круглых тел ]
Сложность: 3
Классы: 10,11

В круг вписан правильный треугольник. Найдите отношение объёмов тел, полученных от вращения круга и треугольника вокруг диаметра, проходящего через вершину треугольника. В ответе укажите отношение меньшего объёма к большему (с точностью до сотых).
Прислать комментарий     Решение


Страница: << 1 2 3 4 >> [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .