ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Обозначим сумму трёх последовательных натуральных чисел через a, а сумму трёх следующих за ними чисел – через b.
Может ли произведение ab равняться 1111111111?

   Решение

Задачи

Страница: << 182 183 184 185 186 187 188 >> [Всего задач: 2440]      



Задача 88122

Темы:   [ Числовые таблицы и их свойства ]
[ Признаки делимости на 3 и 9 ]
[ Подсчет двумя способами ]
Сложность: 2+
Классы: 6,7,8

В клетках таблицы 5×5 стоят ненулевые цифры. В каждой строке и в каждом столбце из всех стоящих там цифр составлены десять пятизначных чисел. Может ли оказаться, что из всех этих чисел ровно одно не делится на 3?

Прислать комментарий     Решение

Задача 88149

Темы:   [ Текстовые задачи (прочее) ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 2+
Классы: 5,6,7

Группа восьмиклассников решила поехать во время каникул на экскурсию в Углич. Ежемесячно каждый ученик вносил определённое количество рублей (без копеек), одинаковое для всех, и в течение пяти месяцев было собрано 49685 руб. Сколько было в группе учеников и какую сумму внёс каждый?

Прислать комментарий     Решение

Задача 88166

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Четность и нечетность ]
[ Арифметика. Устный счет и т.п. ]
[ Обыкновенные дроби ]
Сложность: 2+
Классы: 6,7,8

Дети держат в руках флажки. Тех, у кого в обеих руках поровну флажков, в 5 раз меньше, чем тех, у кого не поровну. Когда каждый ребёнок переложил по одному флажку из одной руки в другую, тех, у кого в обеих руках поровну флажков, стало в 2 раза меньше, чем тех, у кого не поровну. Могло ли быть так, что в начале более чем у половины детей в одной руке было ровно на один флажок меньше, чем в другой?

Прислать комментарий     Решение

Задача 88270

Темы:   [ Десятичная система счисления ]
[ Уравнения в целых числах ]
Сложность: 2+
Классы: 5,6,7

Найдите двузначное число, которое вдвое больше произведения своих цифр.

Прислать комментарий     Решение

Задача 88290

Темы:   [ Арифметические действия. Числовые тождества ]
[ Признаки делимости на 3 и 9 ]
Сложность: 2+
Классы: 7,8

Обозначим сумму трёх последовательных натуральных чисел через a, а сумму трёх следующих за ними чисел – через b.
Может ли произведение ab равняться 1111111111?

Прислать комментарий     Решение

Страница: << 182 183 184 185 186 187 188 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .