ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья "Графы" (А. Савин) Статья "Элементы теории графов" (В. Фосс) Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи При каком n > 1 может случиться так, что в компании из n + 1 девочек и n мальчиков все девочки знакомы с разным числом мальчиков, а все мальчики – с одним и тем же числом девочек? Решение |
Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 383]
20 футбольных команд проводят первенство. В первый день все команды сыграли по одной игре. Во второй также все команды сыграли по одной игре.
В некотором королевстве было 32 рыцаря. Некоторые из них были вассалами
других (вассал может иметь только одного сюзерена, причём сюзерен всегда богаче
своего вассала). Рыцарь, имевший не менее четырёх вассалов, носил титул барона.
Какое наибольшее число баронов могло быть при этих условиях?
В каждой клетке квадрата 8×8 клеток проведена одна из диагоналей. Рассмотрим объединение этих 64 диагоналей. Оно состоит из нескольких связных частей (к одной части относятся точки, между которыми можно пройти по одной или нескольким диагоналям). Может ли количество этих частей быть
При каком n > 1 может случиться так, что в компании из n + 1 девочек и n мальчиков все девочки знакомы с разным числом мальчиков, а все мальчики – с одним и тем же числом девочек?
Как, не отрывая карандаша от бумаги, провести шесть отрезков таким образом, чтобы оказались зачёркнутыми 16 точек, расположенных в вершинах квадратной сетки 4×4?
Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 383] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|