Страница:
<< 29 30 31 32
33 34 35 >> [Всего задач: 413]
|
|
Сложность: 3 Классы: 10,11
|
Сумма двух целых чисел равна S. Маша умножила левое число на целое число a, правое – на целое число b, сложила эти произведения и обнаружила, что полученная сумма делится на S. Алёша, наоборот, левое число умножил на b, а правое – на a. Докажите, что и у него аналогичная сумма разделится на S.
|
|
Сложность: 3 Классы: 7,8,9
|
Пусть $a$, $b$, $c$, $d$ и $n$ — натуральные числа.
Докажите, что если числа $(a-b)(c-d)$ и $(a-c)(b-d)$ делятся на $n$, то и число $(a-d)(b-c)$ делится на $n$.
|
|
Сложность: 3 Классы: 8,9,10,11
|
Найдите все натуральные $n$, удовлетворяющие условию: числа $1, 2, 3, \ldots, 2n$ можно разбить на пары так, что если сложить числа в каждой паре и результаты перемножить, получится квадрат натурального числа.
Доказать, что произведение четырех последовательных целых чисел в сумме с
единицей даёт полный квадрат.
Какой остаток даёт x + x³ + x9 + x27 + x81 + x243 при делении на x – 1?
Страница:
<< 29 30 31 32
33 34 35 >> [Всего задач: 413]