Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 215]
64 неотрицательных числа, сумма которых равна 1956, расположены в форме
квадратной таблицы по восемь чисел в каждой строке и в каждом столбце. Сумма
чисел, стоящих на двух диагоналях, равна 112. Числа, расположенные симметрично относительно любой диагонали, равны. Докажите, что сумма чисел в любой строке меньше 518.
|
|
Сложность: 4- Классы: 8,9,10,11
|
В каждой клетке квадратной таблицы m×m клеток стоит либо натуральное число, либо нуль. При этом, если на пересечении строки и столбца стоит нуль, то сумма чисел в "кресте", состоящем из этой строки и этого столбца, не меньше m. Докажите, что сумма всех чисел в таблице не меньше чем ½ m².
|
|
Сложность: 4- Классы: 9,10
|
Во всех клетках таблицы 100×100 стоят плюсы. Разрешается одновременно
менять знаки во всех клетках одной строки или же во всех клетках одного столбца. Можно ли, пользуясь только этими операциями, получить ровно 1970 минусов?
В клетках таблицы размером 10×20 расставлено 200 различных чисел. В
каждой строчке отмечены два наибольших числа красным цветом, а в каждом столбце
отмечены два наибольших числа синим цветом. Доказать, что не менее трёх чисел
отмечены в таблице как красным, так и синим цветом.
|
|
Сложность: 4- Классы: 7,8,9,10
|
В таблицу 10×10 нужно записать в каком-то порядке цифры 0, 1, 2, 3, ..., 9 так, что каждая цифра встречалась бы 10 раз.
а) Можно ли это сделать так, чтобы в каждой строке и в каждом
столбце встречалось не более четырёх различных цифр?
б) Докажите, что найдётся строка или столбец, в которой (в котором) встречается не меньше четырёх различных чисел.
Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 215]