Страница:
<< 17 18 19 20
21 22 23 >> [Всего задач: 215]
|
|
Сложность: 4- Классы: 7,8,9
|
В клетки шахматной доски записаны числа от 1 до 64 (первая горизонталь
нумеруется слева направо числами от 1 до 8, вторая от 9 до 16 и т. д.). Перед
некоторыми числами поставлены плюсы, перед остальными – минусы, так что в
каждой горизонтали и в каждой вертикали по четыре плюса и по четыре минуса. Докажите, что сумма всех чисел равна 0.
Можно ли в таблицу 9×9 расставить такие натуральные числа, что одновременно выполняются следующие условия:
1) произведения чисел, стоящих в одной строке, одинаковы для всех строк;
2) произведения чисел, стоящих в одном столбце, одинаковы для всех столбцов;
3) среди чисел нет равных;
4) все числа не больше 1991?
|
|
Сложность: 4- Классы: 8,9,10
|
В таблице n×n разрешается добавить ко всем числам любого несамопересекающегося замкнутого маршрута ладьи по 1. В первоначальной таблице по диагонали стояли единицы, а остальные были нули. Можно ли с помощью нескольких разрешённых преобразований добиться того, что все числа в таблице станут равны? (Считается, что ладья побывала во всех клетках таблицы, через которые проходит её путь.)
|
|
Сложность: 4- Классы: 7,8,9
|
В таблицу записано девять чисел:
Известно, что шесть чисел – суммы строк и суммы столбцов таблицы – равны между собой:
a1 + a2 + a3 = b1 + b2 + b3 = c1 + c2 + c3 = a1 + b1 + c1 = a2 + b2 + c2 = a3 + b3 + c3.
Докажите, что сумма произведений строк таблицы равна сумме произведений её
столбцов:
a1b1c1 +
a2b2c2 +
a3b3c3 =
a1a2a3 +
b1b2b3 +
c1c2c3.
В каждой клетке таблицы (n–2)×n (n > 2) записано целое число от 1 до n, причём в каждой строке все числа различны и в каждом столбце все числа различны. Докажите, что эту таблицу можно дополнить до квадрата n×n, записав в каждую новую клетку какое-нибудь целое число от 1 до n так, чтобы по-прежнему в каждой строке и в каждом столбце числа были различны.
Страница:
<< 17 18 19 20
21 22 23 >> [Всего задач: 215]