ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 215]      



Задача 97957

Темы:   [ Числовые таблицы и их свойства ]
[ Подсчет двумя способами ]
Сложность: 4-
Классы: 7,8,9

Автор: Фольклор

В клетки шахматной доски записаны числа от 1 до 64 (первая горизонталь нумеруется слева направо числами от 1 до 8, вторая от 9 до 16 и т. д.). Перед некоторыми числами поставлены плюсы, перед остальными – минусы, так что в каждой горизонтали и в каждой вертикали по четыре плюса и по четыре минуса. Докажите, что сумма всех чисел равна 0.

Прислать комментарий     Решение

Задача 98118

Темы:   [ Числовые таблицы и их свойства ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9

Можно ли в таблицу 9×9 расставить такие натуральные числа, что одновременно выполняются следующие условия:
  1) произведения чисел, стоящих в одной строке, одинаковы для всех строк;
  2) произведения чисел, стоящих в одном столбце, одинаковы для всех столбцов;
  3) среди чисел нет равных;
  4) все числа не больше 1991?

Прислать комментарий     Решение

Задача 98147

Темы:   [ Числовые таблицы и их свойства ]
[ Шахматная раскраска ]
[ Инварианты ]
[ Теория алгоритмов (прочее) ]
Сложность: 4-
Классы: 8,9,10

В таблице  n×n  разрешается добавить ко всем числам любого несамопересекающегося замкнутого маршрута ладьи по 1. В первоначальной таблице по диагонали стояли единицы, а остальные были нули. Можно ли с помощью нескольких разрешённых преобразований добиться того, что все числа в таблице станут равны? (Считается, что ладья побывала во всех клетках таблицы, через которые проходит её путь.)

Прислать комментарий     Решение

Задача 98418

Темы:   [ Числовые таблицы и их свойства ]
[ Тождественные преобразования ]
[ Симметрические многочлены ]
[ Линейная и полилинейная алгебра ]
Сложность: 4-
Классы: 7,8,9

В таблицу записано девять чисел:

Известно, что шесть чисел – суммы строк и суммы столбцов таблицы – равны между собой:
a1 + a2 + a3 = b1 + b2 + b3 = c1 + c2 + c3 = a1 + b1 + c1 = a2 + b2 + c2 = a3 + b3 + c3.
Докажите, что сумма произведений строк таблицы равна сумме произведений её столбцов:   a1b1c1 + a2b2c2 + a3b3c3 = a1a2a3 + b1b2b3 + c1c2c3.

Прислать комментарий     Решение

Задача 98544

Темы:   [ Числовые таблицы и их свойства ]
[ Ориентированные графы ]
[ Степень вершины ]
Сложность: 4-
Классы: 8,9

В каждой клетке таблицы  (n–2)×n  (n > 2)  записано целое число от 1 до n, причём в каждой строке все числа различны и в каждом столбце все числа различны. Докажите, что эту таблицу можно дополнить до квадрата n×n, записав в каждую новую клетку какое-нибудь целое число от 1 до n так, чтобы по-прежнему в каждой строке и в каждом столбце числа были различны.

Прислать комментарий     Решение

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 215]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .